|
|
A073245
|
|
Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.
|
|
2
|
|
|
1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A062822(n)*A005117(n).
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
a(n) = A064987(A005117(n)). - Michel Marcus, Oct 18 2020
|
|
EXAMPLE
|
14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
|
|
MATHEMATICA
|
Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
|
|
PROG
|
(PARI) apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
|
|
CROSSREFS
|
Cf. A004709, A005117, A007947, A062822, A064987, A072048, A306633.
Sequence in context: A236539 A122211 A015801 * A119626 A152522 A096356
Adjacent sequences: A073242 A073243 A073244 * A073246 A073247 A073248
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Jul 21 2002
|
|
STATUS
|
approved
|
|
|
|