login
A073245
Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.
2
1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
OFFSET
1,2
LINKS
FORMULA
a(n) = A062822(n)*A005117(n).
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
a(n) = A064987(A005117(n)). - Michel Marcus, Oct 18 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)^3/(3*zeta(3)) = 1.23423882415851340020... . - Amiram Eldar, Oct 09 2023
EXAMPLE
14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
MATHEMATICA
Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
PROG
(PARI) apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
(Python)
from math import isqrt
from sympy import mobius, divisor_sigma
def A073245(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m*divisor_sigma(m) # Chai Wah Wu, Aug 12 2024
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2002
STATUS
approved