|
|
A073248
|
|
Squarefree numbers k such that k+1 is also squarefree, but k-1 and k+2 are not.
|
|
5
|
|
|
10, 46, 61, 73, 82, 118, 122, 133, 145, 154, 173, 190, 205, 226, 246, 262, 273, 277, 290, 298, 313, 326, 334, 370, 373, 385, 406, 421, 426, 442, 457, 473, 478, 493, 505, 514, 526, 537, 565, 573, 586, 601, 606, 622, 626, 658, 673, 694, 709, 730, 733, 745
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
state:= [true, true, true, true]:
R:= NULL: count:= 0:
for n from 1 while count < 100 do
state:= [state[2], state[3], state[4], numtheory:-issqrfree(n)];
if state = [false, true, true, false] then
R:= R, n-2; count:= count+1
fi
od:
R; # Robert Israel, Mar 02 2022
|
|
MATHEMATICA
|
Transpose[SequencePosition[Table[If[SquareFreeQ[n], 1, 0], {n, 800}], {0, 1, 1, 0}]][[1]]+1 (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Mar 09 2016 *)
|
|
CROSSREFS
|
Cf. A005117, A073250, A073247, A007675.
Sequence in context: A264414 A188699 A044112 * A044493 A350319 A279092
Adjacent sequences: A073245 A073246 A073247 * A073249 A073250 A073251
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Jul 22 2002
|
|
STATUS
|
approved
|
|
|
|