login
A073248
Squarefree numbers k such that k+1 is also squarefree, but k-1 and k+2 are not.
5
10, 46, 61, 73, 82, 118, 122, 133, 145, 154, 173, 190, 205, 226, 246, 262, 273, 277, 290, 298, 313, 326, 334, 370, 373, 385, 406, 421, 426, 442, 457, 473, 478, 493, 505, 514, 526, 537, 565, 573, 586, 601, 606, 622, 626, 658, 673, 694, 709, 730, 733, 745
OFFSET
1,1
LINKS
MAPLE
state:= [true, true, true, true]:
R:= NULL: count:= 0:
for n from 1 while count < 100 do
state:= [state[2], state[3], state[4], numtheory:-issqrfree(n)];
if state = [false, true, true, false] then
R:= R, n-2; count:= count+1
fi
od:
R; # Robert Israel, Mar 02 2022
MATHEMATICA
Transpose[SequencePosition[Table[If[SquareFreeQ[n], 1, 0], {n, 800}], {0, 1, 1, 0}]][[1]]+1 (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Mar 09 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 22 2002
STATUS
approved