OFFSET
0,3
COMMENTS
Notice that the imaginary components in the generating function vanish when expanded as a power series in x.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..200
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n*(A(x)^n + i)^n / (1 + i*x*A(x)^n)^(n+1).
(2) A(x) = Sum_{n>=0} x^n*(A(x)^n - i)^n / (1 - i*x*A(x)^n)^(n+1).
From Paul D. Hanna, Nov 05 2021: (Start)
(3) A(x) = Sum_{n>=0} x^n*Sum_{k=0..n} i^k * binomial(n,k) * (A(x)^n - i*A(x)^k)^(n-k).
(4) A(x) = Sum_{n>=0} x^n*Sum_{k=0..n} (-i)^k * binomial(n,k) * (A(x)^n + i*A(x)^k)^(n-k). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 43*x^4 + 238*x^5 + 1436*x^6 + 9230*x^7 + 62347*x^8 + 438397*x^9 + 3188687*x^10 + 23886061*x^11 + 183706628*x^12 + ...
such that
A(x) = 1/(1 - i*x) + x*(A(x) - i)/(1 - i*x*A(x))^2 + x^2*(A(x)^2 - i)^2/(1 - i*x*A(x)^2)^3 + x^3*(A(x)^3 - i)^3/(1 - i*x*A(x)^3)^4 + x^4*(A(x)^4 - i)^4/(1 - i*x*A(x)^4)^5 + x^5*(A(x)^5 - i)^5/(1 - i*x*A(x)^5)^6 + ...
also
A(x) = 1/(1 + i*x) + x*(A(x) + i)/(1 + i*x*A(x))^2 + x^2*(A(x)^2 + i)^2/(1 + i*x*A(x)^2)^3 + x^3*(A(x)^3 + i)^3/(1 + i*x*A(x)^3)^4 + x^4*(A(x)^4 + i)^4/(1 + i*x*A(x)^4)^5 + x^5*(A(x)^5 + i)^5/(1 + i*x*A(x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A, x^n*(Ser(A)^n + I)^n/(1 + I*x*Ser(A)^n)^(n+1) ), #A-1)); polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2019
STATUS
approved