The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325296 G.f. A(x) satisfies: 1 + 2*Sum_{n>=1} x^n*A(x)^(n^2) = Sum_{n>=0} x^n*(1 + A(x)^n)^n. 2
 1, 2, 6, 34, 274, 2566, 26406, 290530, 3361042, 40463894, 503505542, 6445263858, 84593906962, 1135730543782, 15571171913958, 217755224972034, 3103675765823634, 45064501714445366, 666402338952126790, 10035910959863435794, 153933449475479903634, 2405188381726250188486, 38293058095081812664742, 621408387360835449163042, 10281437987942851628839442, 173489555489829641553617494 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = 2 (mod 4) for n > 0. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA G.f. A(x) allows the following sums to equal the same series B(x): (1) B(x) = Sum_{n>=0} x^n * (1 + A(x)^n)^n, (2) B(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (1 - x*A(x)^n)^(n+1). (3) B(x) = 1 + 2*Sum_{n>=1} x^n * A(x)^(n^2). FORMULAS FOR TERMS. a(n) = 2 (mod 4) for n > 0. EXAMPLE G.f.: A(x) = 1 + 2*x + 6*x^2 + 34*x^3 + 274*x^4 + 2566*x^5 + 26406*x^6 + 290530*x^7 + 3361042*x^8 + 40463894*x^9 + 503505542*x^10 + 6445263858*x^11 + 84593906962*x^12 + 1135730543782*x^13 + 15571171913958*x^14 + 217755224972034*x^15 + 3103675765823634*x^16 + ... such that the following sums are all equal: (1) B(x) = 1 + x*(1 + A(x)) + x^2*(1 + A(x)^2)^2 + x^3*(1 + A(x)^3)^3 + x^4*(1 + A(x)^4)^4 + x^5*(1 + A(x)^5)^5 + x^6*(1 + A(x)^6)^6 + x^7*(1 + A(x)^7)^7 + x^8*(1 + A(x)^8)^8 + ... (2) B(x) = 1/(1-x) + x*A(x)/(1-x*A(x))^2 + x^2*A(x)^4/(1-x*A(x)^2)^3 + x^3*A(x)^9/(1-x*A(x)^3)^4 + x^4*A(x)^16/(1-x*A(x)^4)^5 + x^5*A(x)^25/(1-x*A(x)^5)^6 + x^6*A(x)^36/(1-x*A(x)^6)^7 + x^7*A(x)^49/(1-x*A(x)^7)^8 + ... (3) B(x) = 1 + 2*x*A(x) + 2*x^2*A(x)^4 + 2*x^3*A(x)^9 + 2*x^4*A(x)^16 + 2*x^5*A(x)^25 + 2*x^6*A(x)^36 + 2*x^7*A(x)^49 + 2*x^8*A(x)^64 + ... where B(x) = 1 + 2*x + 6*x^2 + 30*x^3 + 202*x^4 + 1634*x^5 + 14934*x^6 + 148862*x^7 + 1583578*x^8 + 17724802*x^9 + 206742342*x^10 + 2496080542*x^11 + 31043750570*x^12 + 396327038050*x^13 + 5180639658102*x^14 + 69207202312318*x^15 + 943572290565690*x^16 + ... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = -polcoeff( sum(n=0, #A, x^n*(2*Ser(A)^(n^2) - (1+Ser(A)^n)^n) ), #A) ); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A326275, A326560, A326561, A326562, A326287. Sequence in context: A002685 A262391 A271212 * A052878 A168362 A274711 Adjacent sequences:  A325293 A325294 A325295 * A325297 A325298 A325299 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 08:07 EST 2021. Contains 349445 sequences. (Running on oeis4.)