login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325296 G.f. A(x) satisfies: 1 + 2*Sum_{n>=1} x^n*A(x)^(n^2) = Sum_{n>=0} x^n*(1 + A(x)^n)^n. 2
1, 2, 6, 34, 274, 2566, 26406, 290530, 3361042, 40463894, 503505542, 6445263858, 84593906962, 1135730543782, 15571171913958, 217755224972034, 3103675765823634, 45064501714445366, 666402338952126790, 10035910959863435794, 153933449475479903634, 2405188381726250188486, 38293058095081812664742, 621408387360835449163042, 10281437987942851628839442, 173489555489829641553617494 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = 2 (mod 4) for n > 0.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

G.f. A(x) allows the following sums to equal the same series B(x):

(1) B(x) = Sum_{n>=0} x^n * (1 + A(x)^n)^n,

(2) B(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (1 - x*A(x)^n)^(n+1).

(3) B(x) = 1 + 2*Sum_{n>=1} x^n * A(x)^(n^2).

FORMULAS FOR TERMS.

a(n) = 2 (mod 4) for n > 0.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 6*x^2 + 34*x^3 + 274*x^4 + 2566*x^5 + 26406*x^6 + 290530*x^7 + 3361042*x^8 + 40463894*x^9 + 503505542*x^10 + 6445263858*x^11 + 84593906962*x^12 + 1135730543782*x^13 + 15571171913958*x^14 + 217755224972034*x^15 + 3103675765823634*x^16 + ...

such that the following sums are all equal:

(1) B(x) = 1 + x*(1 + A(x)) + x^2*(1 + A(x)^2)^2 + x^3*(1 + A(x)^3)^3 + x^4*(1 + A(x)^4)^4 + x^5*(1 + A(x)^5)^5 + x^6*(1 + A(x)^6)^6 + x^7*(1 + A(x)^7)^7 + x^8*(1 + A(x)^8)^8 + ...

(2) B(x) = 1/(1-x) + x*A(x)/(1-x*A(x))^2 + x^2*A(x)^4/(1-x*A(x)^2)^3 + x^3*A(x)^9/(1-x*A(x)^3)^4 + x^4*A(x)^16/(1-x*A(x)^4)^5 + x^5*A(x)^25/(1-x*A(x)^5)^6 + x^6*A(x)^36/(1-x*A(x)^6)^7 + x^7*A(x)^49/(1-x*A(x)^7)^8 + ...

(3) B(x) = 1 + 2*x*A(x) + 2*x^2*A(x)^4 + 2*x^3*A(x)^9 + 2*x^4*A(x)^16 + 2*x^5*A(x)^25 + 2*x^6*A(x)^36 + 2*x^7*A(x)^49 + 2*x^8*A(x)^64 + ...

where

B(x) = 1 + 2*x + 6*x^2 + 30*x^3 + 202*x^4 + 1634*x^5 + 14934*x^6 + 148862*x^7 + 1583578*x^8 + 17724802*x^9 + 206742342*x^10 + 2496080542*x^11 + 31043750570*x^12 + 396327038050*x^13 + 5180639658102*x^14 + 69207202312318*x^15 + 943572290565690*x^16 + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);

A[#A] = -polcoeff( sum(n=0, #A, x^n*(2*Ser(A)^(n^2) - (1+Ser(A)^n)^n) ), #A) ); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A326275, A326560, A326561, A326562, A326287.

Sequence in context: A002685 A262391 A271212 * A052878 A168362 A274711

Adjacent sequences:  A325293 A325294 A325295 * A325297 A325298 A325299

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 23 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 08:07 EST 2021. Contains 349445 sequences. (Running on oeis4.)