login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325297 G.f. A(x) satisfies: Sum_{n>=0} x^n * A(x)^(n*(n+1)/2) = Sum_{n>=0} x^n * (1 + x*A(x))^(n^2). 1
1, 1, 2, 6, 23, 106, 552, 3154, 19354, 125787, 857793, 6097668, 44974804, 343043346, 2699235640, 21870283691, 182217929993, 1559505751514, 13698466973187, 123406993956860, 1139530117567175, 10779314404410246, 104402560966604368, 1034827350713543189, 10491687769529216308, 108749411227098836822, 1151846170139701196232, 12460307262968155546661, 137597370654060977361213 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

EXAMPLE

G.f. A(x) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + 106*x^5 + 552*x^6 + 3154*x^7 + 19354*x^8 + 125787*x^9 + 857793*x^10 + 6097668*x^11 + 44974804*x^12 + ...

such that the following series are equal:

B(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^6 + x^4*A(x)^10 + x^5*A(x)^15 + x^6*A(x)^21 + x^7*A(x)^28 + x^8*A(x)^36 + x^9*A(x)^45 + ...

B(x) = 1 + x*(1+x*A(x)) + x^2*(1+x*A(x))^4 + x^3*(1+x*A(x))^9 + x^4*(1+x*A(x))^16 + x^5*(1+x*A(x))^25 + x^6*(1+x*A(x))^36 + x^7*(1+x*A(x))^49 + ...

where

B(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 92*x^5 + 426*x^6 + 2140*x^7 + 11517*x^8 + 65804*x^9 + 396499*x^10 + 2506624*x^11 + 16559723*x^12 + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

A[#A] = -polcoeff( sum(m=0, #A, x^m*( Ser(A)^(m*(m+1)/2) - (1+x*Ser(A))^(m^2) ) ), #A)); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Sequence in context: A200406 A165489 A192315 * A288912 A193321 A263780

Adjacent sequences:  A325294 A325295 A325296 * A325298 A325299 A325300

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 26 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 22:49 EST 2021. Contains 349596 sequences. (Running on oeis4.)