login
A193321
G.f.: Sum_{n>=0} x^n*Product_{k=1..n} (1 - k*x) / (1 - (2*k)*x).
1
1, 1, 2, 6, 23, 106, 565, 3391, 22523, 163578, 1286990, 10886149, 98377648, 944863003, 9602092037, 102856190049, 1157496371816, 13644751751698, 168052771354837, 2157537327051316, 28814062411243931, 399551143081559391, 5742819361050324227
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + 106*x^5 + 565*x^6 +...
where
A(x) = 1 + x*(1-x)/(1-2*x) + x^2*(1-x)*(1-2*x)/((1-2*x)*(1-4*x)) + x^3*(1-x)*(1-2*x)*(1-3*x)/((1-2*x)*(1-4*x)*(1-6*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, (1-k*x)/(1-(2*k)*x +x*O(x^n)))), n)}
CROSSREFS
Sequence in context: A192315 A325297 A288912 * A263780 A363417 A125273
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 22 2011
STATUS
approved