login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325298
G.f. A(x) satisfies: Sum_{n>=0} x^(n*(n+1)/2) * A(x)^n = Sum_{n>=0} x^n * (1+x)^(n*(n+1)/2).
1
1, 2, 3, 6, 17, 56, 189, 673, 2561, 10321, 43612, 192439, 884702, 4227202, 20942697, 107363291, 568547892, 3105231155, 17467413871, 101069173004, 600841031279, 3665958252167, 22933712331957, 146968161483626, 963973640814332, 6466300466801210, 44327544752355141, 310325239786656220, 2217191324979383686, 16157187739844358535, 120020165206009363396, 908305634422244782653, 6999639387956913535113
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 17*x^4 + 56*x^5 + 189*x^6 + 673*x^7 + 2561*x^8 + 10321*x^9 + 43612*x^10 + 192439*x^11 + 884702*x^12 + ...
such that the following series are equal
B(x) = 1 + x*A(x) + x^3*A(x)^2 + x^6*A(x)^3 + x^10*A(x)^4 + x^15*A(x)^5 + x^21*A(x)^6 + x^28*A(x)^7 + x^36*A(x)^8 + x^45*A(x)^9 + ...
B(x) = 1 + x*(1+x) + x^2*(1+x)^3 + x^3*(1+x)^6 + x^4*(1+x)^10 + x^5*(1+x)^15 + x^6*(1+x)^21 + x^7*(1+x)^28 + x^8(1+x)^36 + x^9*(1+x)^45 + ...
where
B(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 27*x^5 + 81*x^6 + 262*x^7 + 910*x^8 + 3363*x^9 + 13150*x^10 + 54135*x^11 + 233671*x^12 + ... + A121690(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = -polcoeff( sum(m=0, #A, x^(m*(m+1)/2)*Ser(A)^m - x^m*(1+x +x*O(x^#A) )^(m*(m+1)/2) ), #A) ); A[n+1]}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
Cf. A121690.
Sequence in context: A078344 A024498 A319283 * A361380 A073591 A114491
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 28 2019
STATUS
approved