login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361380
Sum over the j-th term of the (n-j)-th inverse binomial transform of the Bell numbers (A000110) for all j in [n].
3
1, 2, 3, 6, 17, 56, 215, 922, 4305, 21894, 119539, 696632, 4314925, 28237146, 194602079, 1407456694, 10649642837, 84100177424, 691474151187, 5907288773554, 52340230286509, 480153099982726, 4553711640946919, 44584683333637168, 450075389309517849
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{i=0..n} i! * [x^i] exp(exp(x)-(n-i)*x-1).
a(n) = Sum_{0<=j<=i<=n} binomial(i,j)*(i-n)^(i-j)*Bell(j).
a(n) mod 2 = A059841(n).
MAPLE
a:= n-> add(add(binomial(i, j)*(i-n)^(i-j)*combinat[bell](j), j=0..i), i=0..n):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> add(i!*coeff(series(exp(exp(x)-(n-i)*x-1), x, i+1), x, i), i=0..n):
seq(a(n), n=0..25);
# third Maple program:
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
a:= n-> add(b(i, i-n), i=0..n):
seq(a(n), n=0..25);
PROG
(Python)
from math import comb
from sympy import bell
def A361380(n): return sum(comb(i, j)*(i-n)**(i-j)*bell(j) for i in range(n+1) for j in range(i+1)) # Chai Wah Wu, Apr 05 2023
CROSSREFS
Antidiagonal sums of A361781.
Sequence in context: A024498 A319283 A325298 * A073591 A114491 A122939
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 09 2023
STATUS
approved