login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum over the j-th term of the (n-j)-th inverse binomial transform of the Bell numbers (A000110) for all j in [n].
3

%I #30 Apr 05 2023 13:31:32

%S 1,2,3,6,17,56,215,922,4305,21894,119539,696632,4314925,28237146,

%T 194602079,1407456694,10649642837,84100177424,691474151187,

%U 5907288773554,52340230286509,480153099982726,4553711640946919,44584683333637168,450075389309517849

%N Sum over the j-th term of the (n-j)-th inverse binomial transform of the Bell numbers (A000110) for all j in [n].

%H Alois P. Heinz, <a href="/A361380/b361380.txt">Table of n, a(n) for n = 0..576</a>

%F a(n) = Sum_{i=0..n} i! * [x^i] exp(exp(x)-(n-i)*x-1).

%F a(n) = Sum_{0<=j<=i<=n} binomial(i,j)*(i-n)^(i-j)*Bell(j).

%F a(n) mod 2 = A059841(n).

%p a:= n-> add(add(binomial(i, j)*(i-n)^(i-j)*combinat[bell](j), j=0..i), i=0..n):

%p seq(a(n), n=0..25);

%p # second Maple program:

%p a:= n-> add(i!*coeff(series(exp(exp(x)-(n-i)*x-1), x, i+1), x, i), i=0..n):

%p seq(a(n), n=0..25);

%p # third Maple program:

%p b:= proc(n, m) option remember;

%p `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))

%p end:

%p a:= n-> add(b(i, i-n), i=0..n):

%p seq(a(n), n=0..25);

%o (Python)

%o from math import comb

%o from sympy import bell

%o def A361380(n): return sum(comb(i,j)*(i-n)**(i-j)*bell(j) for i in range(n+1) for j in range(i+1)) # _Chai Wah Wu_, Apr 05 2023

%Y Antidiagonal sums of A361781.

%Y Cf. A000110, A059841, A290219, A347420.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Mar 09 2023