The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185280 Decimal expansion of a constant appearing in the solution of Polya's 2D drunkard problem. 2
 8, 8, 2, 5, 4, 2, 4, 0, 0, 6, 1, 0, 6, 0, 6, 3, 7, 3, 5, 8, 5, 8, 2, 5, 7, 2, 8, 4, 7, 1, 9, 9, 0, 7, 6, 3, 9, 3, 0, 7, 5, 8, 9, 9, 4, 9, 1, 8, 6, 2, 1, 8, 8, 1, 9, 5, 7, 0, 5, 2, 9, 3, 4, 8, 2, 8, 4, 8, 7, 0, 6, 8, 1, 8, 6, 7, 4, 6, 7, 2, 9, 9, 9, 1, 9, 7, 2, 4, 4, 7, 4, 1, 5, 8, 7, 0, 2, 2, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; p. 425-426. FORMULA 1 + Sum_{n>=1} binomial(2*n, n)^2/16^n - 1/(Pi*n). Equals 1 + (4*log(2) - Pi)/Pi. Equals 4*log(2)/Pi. - Michel Marcus, Jul 28 2016 EXAMPLE 0.882542400610606373585825728471990763930758994918621881957052934828487068186... MATHEMATICA 1+(4*Log[2]-Pi)/Pi // N[#, 100]& // RealDigits // First PROG (PARI) 4*log(2)/Pi \\ Michel Marcus, Jul 28 2016 CROSSREFS Cf. A016639. Sequence in context: A105193 A178678 A217459 * A344074 A011464 A019871 Adjacent sequences:  A185277 A185278 A185279 * A185281 A185282 A185283 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Apr 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 15:24 EDT 2021. Contains 345386 sequences. (Running on oeis4.)