login
A185280
Decimal expansion of a constant appearing in the solution of Polya's 2D drunkard problem.
2
8, 8, 2, 5, 4, 2, 4, 0, 0, 6, 1, 0, 6, 0, 6, 3, 7, 3, 5, 8, 5, 8, 2, 5, 7, 2, 8, 4, 7, 1, 9, 9, 0, 7, 6, 3, 9, 3, 0, 7, 5, 8, 9, 9, 4, 9, 1, 8, 6, 2, 1, 8, 8, 1, 9, 5, 7, 0, 5, 2, 9, 3, 4, 8, 2, 8, 4, 8, 7, 0, 6, 8, 1, 8, 6, 7, 4, 6, 7, 2, 9, 9, 9, 1, 9, 7, 2, 4, 4, 7, 4, 1, 5, 8, 7, 0, 2, 2, 3, 5, 5, 4, 5, 9, 3
OFFSET
0,1
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; p. 425-426.
FORMULA
1 + Sum_{n>=1} binomial(2*n, n)^2/16^n - 1/(Pi*n).
Equals 1 + (4*log(2) - Pi)/Pi.
Equals 4*log(2)/Pi. - Michel Marcus, Jul 28 2016
EXAMPLE
0.882542400610606373585825728471990763930758994918621881957052934828487068186...
MATHEMATICA
1+(4*Log[2]-Pi)/Pi // N[#, 100]& // RealDigits // First
PROG
(PARI) 4*log(2)/Pi \\ Michel Marcus, Jul 28 2016
CROSSREFS
Sequence in context: A105193 A178678 A217459 * A344074 A377589 A011464
KEYWORD
nonn,cons,easy
AUTHOR
EXTENSIONS
a(99) corrected by Georg Fischer, Jul 12 2021
STATUS
approved