login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185282
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of n-element subsets that can be chosen from {1,2,...,2*n^k} having element sum n^(k+1).
3
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 3, 0, 1, 1, 7, 36, 7, 0, 1, 1, 15, 351, 785, 18, 0, 1, 1, 31, 3240, 56217, 26404, 51, 0, 1, 1, 63, 29403, 3695545, 18878418, 1235580, 155, 0, 1, 1, 127, 265356, 238085177, 12107973904, 11163952389, 74394425, 486, 0
OFFSET
0,13
COMMENTS
A(n,k) is the number of partitions of n^(k+1) into n distinct parts <= 2*n^k.
EXAMPLE
A(0,0) = 1: {}.
A(1,1) = 1: {1}.
A(2,2) = 3: {1,7}, {2,6}, {3,5}.
A(3,1) = 3: {1,2,6}, {1,3,5}, {2,3,4}.
A(4,1) = 7: {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7}, {2,3,5,6}.
A(2,3) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
0, 1, 3, 7, 15, ...
0, 3, 36, 351, 3240, ...
0, 7, 785, 56217, 3695545, ...
0, 18, 26404, 18878418, 12107973904, ...
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
A:= (n, k)-> b(n^(k+1), 2*n^k, n):
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
$RecursionLimit = 10000; b[n_, i_, t_] := b[n, i, t] = If [i < t || n < t*(t+1)/2 || n > t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]]; A[0, _] = A[1, _] = 1; A[n_ /; n > 1, 0] = 0; A[n_, k_] := b[n^(k+1), 2*n^k, n]; Table[Print[ta = Table [A[n, d-n], {n, 0, d}]]; ta, {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
Rows n=1-3 give: A000012, A000225, A026121.
Columns k=1-3 give: A202261, A186730, A185062.
Sequence in context: A288644 A172169 A306629 * A193470 A102752 A104548
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 25 2012
STATUS
approved