Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 21 2018 22:45:17
%S 1,1,1,1,1,0,1,1,1,0,1,1,3,3,0,1,1,7,36,7,0,1,1,15,351,785,18,0,1,1,
%T 31,3240,56217,26404,51,0,1,1,63,29403,3695545,18878418,1235580,155,0,
%U 1,1,127,265356,238085177,12107973904,11163952389,74394425,486,0
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of n-element subsets that can be chosen from {1,2,...,2*n^k} having element sum n^(k+1).
%C A(n,k) is the number of partitions of n^(k+1) into n distinct parts <= 2*n^k.
%e A(0,0) = 1: {}.
%e A(1,1) = 1: {1}.
%e A(2,2) = 3: {1,7}, {2,6}, {3,5}.
%e A(3,1) = 3: {1,2,6}, {1,3,5}, {2,3,4}.
%e A(4,1) = 7: {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7}, {2,3,5,6}.
%e A(2,3) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, ...
%e 0, 1, 3, 7, 15, ...
%e 0, 3, 36, 351, 3240, ...
%e 0, 7, 785, 56217, 3695545, ...
%e 0, 18, 26404, 18878418, 12107973904, ...
%p b:= proc(n, i, t) option remember;
%p `if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
%p `if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
%p end:
%p A:= (n, k)-> b(n^(k+1), 2*n^k, n):
%p seq(seq(A(n, d-n), n=0..d), d=0..8);
%t $RecursionLimit = 10000; b[n_, i_, t_] := b[n, i, t] = If [i < t || n < t*(t+1)/2 || n > t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]]; A[0, _] = A[1, _] = 1; A[n_ /; n > 1, 0] = 0; A[n_, k_] := b[n^(k+1), 2*n^k, n]; Table[Print[ta = Table [A[n, d-n], {n, 0, d}]]; ta, {d, 0, 9}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *)
%Y Rows n=1-3 give: A000012, A000225, A026121.
%Y Columns k=1-3 give: A202261, A186730, A185062.
%K nonn,tabl
%O 0,13
%A _Alois P. Heinz_, Jan 25 2012