login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185062
Number of n-element subsets that can be chosen from {1,2,...,2*n^3} having element sum n^4.
1
1, 1, 7, 351, 56217, 18878418, 11163952389, 10292468330630, 13703363417260677, 24932632800863823135, 59509756600504616529186, 180533923700628895521591343, 678854993880375551144618682344, 3100113915888360851262910882014885
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n^4 into n distinct parts <= 2*n^3.
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n^4, 2*n^3, n):
seq(a(n), n=0..5);
MATHEMATICA
$RecursionLimit = 10000;
b[n_, i_, t_] := b[n, i, t] =
If[i < t || n < t(t+1)/2 || n > t(2i - t + 1)/2, 0,
If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]];
a[n_] := b[n^4, 2 n^3, n];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 10}] (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A185282.
Sequence in context: A142669 A239717 A266876 * A067556 A082098 A057634
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 22 2012
STATUS
approved