login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186730
Number of n-element subsets that can be chosen from {1,2,...,2*n^2} having element sum n^3.
2
1, 1, 3, 36, 785, 26404, 1235580, 74394425, 5503963083, 484133307457, 49427802479445, 5750543362215131, 751453252349649771, 109016775078856564392, 17391089152542558703435, 3026419470005398093836960, 570632810506646981058828349, 115900277419940965862120360831
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n^3 into n distinct parts <= 2*n^2.
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 3: {1,7}, {2,6}, {3,5}.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n^3, 2*n^2, n):
seq(a(n), n=0..12);
MATHEMATICA
$RecursionLimit = 2000;
b[n_, i_, t_] := b[n, i, t] = If[i<t || n<t (t+1)/2 || n>t (2i-t+1)/2, 0, If[n==0, 1, b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]]];
a[n_] := b[n^3, 2n^2, n];
a /@ Range[0, 17] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A185282.
Sequence in context: A144758 A301582 A122220 * A224347 A377548 A227251
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 21 2012
STATUS
approved