login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301582
G.f.: Sum_{n>=0} 3^n * ((1+x)^n - 1)^n.
8
1, 3, 36, 765, 22932, 886707, 41971041, 2349915543, 151893243711, 11131097539221, 911906584505874, 82586031357156975, 8192750710914222984, 883506535094875209327, 102907862475072248379060, 12875067336646598300376165, 1722014444866824121524712497, 245185575019136812676809863351, 37027348593726417935247243009495, 5911490521308027393188499233189367, 994821814352463817234026392636083551
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} 3^n * (1+x)^(n^2) /(1 + 3*(1+x)^n)^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = (1 + 3*exp(1/r)) * r^2 = 8.632012704198046828204904686098781240870113556702123911346365466059061495897353..., where r = 0.947093169766093813913446822751643203941993193936... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/3 and c = 0.34734097623709084937300542950550592394946492732014... - Vaclav Kotesovec, Aug 09 2018
EXAMPLE
G.f.: A(x) = 1 + 3*x + 36*x^2 + 765*x^3 + 22932*x^4 + 886707*x^5 + 41971041*x^6 + 2349915543*x^7 + 151893243711*x^8 + ...
such that
A(x) = 1 + 3*((1+x)-1) + 9*((1+x)^2-1)^2 + 27*((1+x)^3-1)^3 + 81*((1+x)^4-1)^4 + 243*((1+x)^5-1)^5 + 729*((1+x)^6-1)^6 + 2187*((1+x)^7-1)^7 + ...
Also,
A(x) = 1/4 + 3*(1+x)/(1 + 3*(1+x))^2 + 9*(1+x)^4/(1 + 3*(1+x)^2)^3 + 27*(1+x)^9/(1 + 3*(1+x)^3)^4 + 81*(1+x)^16/(1 + 3*(1+x)^4)^5 + 243*(1+x)^25/(1 + 3*(1+x)^5)^6 + ...
MATHEMATICA
nmax = 20; CoefficientList[Series[1 + Sum[3^j*((1 + x)^j - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2020 *)
PROG
(PARI) {a(n) = my(A, o=x*O(x^n)); A = sum(m=0, n, 3^m * ((1+x +o)^m - 1)^m ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 24 2018
STATUS
approved