Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 08 2020 04:24:17
%S 1,3,36,765,22932,886707,41971041,2349915543,151893243711,
%T 11131097539221,911906584505874,82586031357156975,8192750710914222984,
%U 883506535094875209327,102907862475072248379060,12875067336646598300376165,1722014444866824121524712497,245185575019136812676809863351,37027348593726417935247243009495,5911490521308027393188499233189367,994821814352463817234026392636083551
%N G.f.: Sum_{n>=0} 3^n * ((1+x)^n - 1)^n.
%H Vaclav Kotesovec, <a href="/A301582/b301582.txt">Table of n, a(n) for n = 0..329</a>
%F G.f.: Sum_{n>=0} 3^n * (1+x)^(n^2) /(1 + 3*(1+x)^n)^(n+1).
%F a(n) ~ c * d^n * n! / sqrt(n), where d = (1 + 3*exp(1/r)) * r^2 = 8.632012704198046828204904686098781240870113556702123911346365466059061495897353..., where r = 0.947093169766093813913446822751643203941993193936... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/3 and c = 0.34734097623709084937300542950550592394946492732014... - _Vaclav Kotesovec_, Aug 09 2018
%e G.f.: A(x) = 1 + 3*x + 36*x^2 + 765*x^3 + 22932*x^4 + 886707*x^5 + 41971041*x^6 + 2349915543*x^7 + 151893243711*x^8 + ...
%e such that
%e A(x) = 1 + 3*((1+x)-1) + 9*((1+x)^2-1)^2 + 27*((1+x)^3-1)^3 + 81*((1+x)^4-1)^4 + 243*((1+x)^5-1)^5 + 729*((1+x)^6-1)^6 + 2187*((1+x)^7-1)^7 + ...
%e Also,
%e A(x) = 1/4 + 3*(1+x)/(1 + 3*(1+x))^2 + 9*(1+x)^4/(1 + 3*(1+x)^2)^3 + 27*(1+x)^9/(1 + 3*(1+x)^3)^4 + 81*(1+x)^16/(1 + 3*(1+x)^4)^5 + 243*(1+x)^25/(1 + 3*(1+x)^5)^6 + ...
%t nmax = 20; CoefficientList[Series[1 + Sum[3^j*((1 + x)^j - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 08 2020 *)
%o (PARI) {a(n) = my(A,o=x*O(x^n)); A = sum(m=0,n, 3^m * ((1+x +o)^m - 1)^m ); polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A122400, A195263, A301581, A301583, A301463.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Mar 24 2018