login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185060
Number of Fibonacci integers in the interval [1, 10^n].
0
10, 88, 534, 2645, 11254, 42735
OFFSET
1,1
COMMENTS
A Fibonacci integer is an integer in the multiplicative group generated by the Fibonacci numbers. For each fixed epsilon > 0,
exp(C*(log(10^n))^1/2 - (log(10^n))^epsilon) < a(n) < exp(C*(log(10^n))^1/2 + (log(10^n))^(1/6+epsilon)) for x sufficiently large, where C = 2*zeta(2)*sqrt(zeta(3)/(zeta(6)*log((1 + sqrt(5))/2))) = 5.15512.... (Luca, Pomerance, Wagner (2010))
The old entry a(4) = 2681 was the result of an incorrect calculation by Luca, Pomerance and Wagner. - Arkadiusz Wesolowski, Feb 05 2013
LINKS
Florian Luca, Carl Pomerance, and Stephen Wagner, Fibonacci integers (Banff conference in honor of Cam Stewart, May 31, 2010 to June 4, 2010.)
MATHEMATICA
e = 4; (*lst1=the terms of A178762 that are smaller than 10^e*); lst1 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 61, 89, 107, 199, 211, 233, 281, 421, 521, 1103, 1597, 2161, 2207, 2521, 3001, 3571, 5779, 9349, 9901}; lst2 = {}; q = Times @@ Complement[Prime@Range[10^e], lst1]; Do[If[GCD[q, n] == 1, AppendTo[lst2, n]], {n, 10^e}]; Table[Length@Select[lst2, # <= 10^d &], {d, e}] (* Arkadiusz Wesolowski, Feb 05 2013 *)
CROSSREFS
Sequence in context: A217417 A136864 A099789 * A125398 A273585 A165148
KEYWORD
hard,more,nonn
AUTHOR
EXTENSIONS
a(4) corrected by T. D. Noe and Arkadiusz Wesolowski, Feb 05 2013
a(5)-a(6) from Arkadiusz Wesolowski, Feb 06 2013
STATUS
approved