login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102752
Array read by antidiagonals: T(n, k) = ((n+2)^k-(n-1)^k)/3.
0
0, 0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 5, 9, 5, 0, 1, 7, 21, 27, 11, 0, 1, 9, 39, 85, 81, 21, 0, 1, 11, 63, 203, 341, 243, 43, 0, 1, 13, 93, 405, 1031, 1365, 729, 85, 0, 1, 15, 129, 715, 2511, 5187, 5461, 2187, 171, 0, 1, 17, 171, 1157, 5261, 15309, 25999, 21845, 6561, 341, 0, 1
OFFSET
0,9
COMMENTS
Consider a 3 X 3 matrix M =
[n, 1, 1]
[1, n, 1]
[1, 1, n].
The n-th row of the array contains the values of the nondiagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = nondiagonal entry + (n-1)^k.)
Table:
n: row sequence G.f. cross references.
0: (2^n-(-1)^n)/3 1/((1+1x)(1-2x)) A001045 (Jacobsthal sequence)
1: (3^n-0^n)/3 1/(1-3x)) A000244
2: (4^n-1^n)/3 1/((1-1x)(1-4x)) A002450
3: (5^n-2^n)/3 1/((1-2x)(1-5x)) A016127
4: (6^n-3^n)/3 1/((1-3x)(1-6x)) A016137
5: (7^n-4^n)/3 1/((1-4x)(1-7x)) A016150
6: (8^n-5^n)/3 1/((1-5x)(1-8x)) A016162
7: (9^n-6^n)/3 1/((1-6x)(1-9x)) A016172
8: (10^n-7^n)/3 1/((1-7x)(1-10x)) A016181
9: (11^n-8^n)/3 1/((1-8x)(1-11x)) A016187
10:(12^n-9^n)/3 1/((1-9x)(1-12x)) A016191
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+2.
Columns follow polynomials with certain binomial coefficients:
column: polynomial
0; 0
1: 1
2: 2*n + 1
3: 3*n^2+ 3*n + 3
4: 4*n^3+ 6*n^2+ 12*n + 5
5: 5*n^4+10*n^3+ 30*n^2+ 25*n + 11
6: 6*n^5+15*n^4+ 60*n^3+ 75*n^2+ 66*n + 21
7: 7*n^6+21*n^5+105*n^4+ 175*n^3+ 231*n^2+ 147*n + 43
8: 8*n^7+28*n^6+168*n^5+ 350*n^4+ 616*n^3+ 588*n^2+344*n+ 85
etc.
Coefficients are generated by the array T(n,k)=(2^(n-k-1)-(-1)^(n-k-1))/3*(binomial(k+(n-k-1),n-k-1)) read by antidiagonals.
EXAMPLE
Array begins:
0, 1, 1, 3, 5, 11, ...
0, 1, 3, 9, 27, 81, ...
0, 1, 5, 21, 85, 341, ...
0, 1, 7, 39, 203, 1031, ...
0, 1, 9, 63, 405, 2511, ...
...
PROG
(PARI) MM(n, N)=local(M); M=matrix(n, n); for(i=1, n, for(j=1, n, if(i==j, M[i, j]=N, M[i, j]=1))); M for(k=0, 10, for(i=0, 10, print1((MM(3, k)^i)[1, 2], ", ")); print())
CROSSREFS
Sequence in context: A306629 A185282 A193470 * A104548 A085707 A320253
KEYWORD
nonn,tabl
AUTHOR
Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 09 2005
STATUS
approved