login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172169
Decimal expansion of solution to x=Fibonacci(x) with 0<x<1.
0
3, 3, 0, 1, 1, 4, 2, 1, 4, 8, 5, 2, 8, 7, 0, 2, 0, 2, 8, 8, 9, 3, 2, 9, 5, 8, 8, 7, 7, 2, 2, 8, 2, 6, 8, 2, 5, 7, 3, 6, 9, 8, 5, 0, 0, 8, 3, 2, 6, 3, 7, 6, 3, 8, 7, 8, 1, 9, 6, 0, 0, 2, 4, 5, 1, 9, 3, 5, 9, 1, 5, 2, 7, 5, 6, 1, 6, 5, 6, 9, 8, 3, 7, 2, 6, 6, 8, 5, 0, 4, 2, 4, 0, 4, 4, 2, 0, 6, 3, 6, 7, 6, 4, 6
OFFSET
0,1
COMMENTS
Fixed point of the Fibonacci function defined as F(x) = ( phi^x - cos(Pi*x) / phi^x )/sqrt(5), an interpolation of the Fibonacci numbers, with phi = A001622, Pi = A000796.
FORMULA
Gerd Lamprecht online Iterationsrechner Beispiel 59.
EXAMPLE
0.3301142148528702028... = Fibonacci(0.3301142148528702028...)
MATHEMATICA
RealDigits[x/.FindRoot[x==Fibonacci[x], {x, .3}, WorkingPrecision->120]] [[1]] (* Harvey P. Dale, Jan 19 2015 *)
PROG
(Gerd Lamprecht online Iterationsrechner) #@P@Q5)*0.5+0.5, x)/@Q5)+@P@Q5)*0.5-0.5, x)*sin(PI*(x-0.5))/@Q5)-x@Na=0.33; b=0.331; c=(a+b)/2; @Nd=(Fx(c)*Fx(a)%3C0); a=d?a:c; b=d?c:b; c=(c+(d?a:b))/2; @N@AFx(c))%3C%205e-17@N0@N1@Nc=c; @B0]=GetKoDezi(-11, 0, 56);
(PARI) F(x) = my(phi=(sqrt(5)+1)/2); (phi^x - cos(Pi*x)/phi^x)/sqrt(5);
solve(x=0.2, 0.8, x-F(x)) \\ Michel Marcus, Jul 29 2022
CROSSREFS
Sequence in context: A163535 A288395 A288644 * A306629 A185282 A193470
KEYWORD
cons,nonn,changed
AUTHOR
Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 28 2010
EXTENSIONS
Adjusted offset and leading zero from R. J. Mathar, Jan 30 2010
STATUS
approved