login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172172
Sums of NW-SE diagonals of triangle A172171.
2
0, 1, 10, 20, 39, 68, 116, 193, 318, 520, 847, 1376, 2232, 3617, 5858, 9484, 15351, 24844, 40204, 65057, 105270, 170336, 275615, 445960, 721584, 1167553, 1889146, 3056708, 4945863, 8002580, 12948452, 20951041, 33899502, 54850552, 88750063, 143600624, 232350696
OFFSET
0,3
COMMENTS
This is the sequence A(0,1;1,1;9) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
FORMULA
a(n) = a(n-1) + a(n-2) + 9 with a(0)=0 and a(1)=1.
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x*(1+8*x)/((1-x)*(1-x-x^2)).
a(n) = 2*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=10 (Observation by G. Detlefs).
(End)
a(n+1) - a(n) = A022099(n). - R. J. Mathar, Apr 22 2013
a(n) = -9 + ( (11 + 9*sqrt(5))*(1 + sqrt(5))^n - (11 - 9*sqrt(5))*(1 - sqrt(5))^n )/(2^(n+1)*sqrt(5)). - Colin Barker, Jul 13 2017
a(n) = Fibonacci(n+3) + 7*Fibonacci(n+1) - 9. - G. C. Greubel, Apr 25 2022
MATHEMATICA
CoefficientList[Series[x*(1+8*x)/((1-x)*(1-x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Jul 13 2017 *)
PROG
(PARI) concat(0, Vec(x*(1+8*x)/((1-x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
(Magma) [Lucas(n+2) +6*Fibonacci(n+1) -9: n in [0..50]]; // G. C. Greubel, Apr 25 2022
(SageMath) [fibonacci(n+3) +7*fibonacci(n+1) -9 for n in (0..50)] # G. C. Greubel, Apr 25 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, Jan 28 2010
EXTENSIONS
Wrong offset 1 changed into 0 Wolfdieter Lang, Oct 18 2010
STATUS
approved