|
|
A172172
|
|
Sums of NW-SE diagonals of triangle A172171.
|
|
2
|
|
|
0, 1, 10, 20, 39, 68, 116, 193, 318, 520, 847, 1376, 2232, 3617, 5858, 9484, 15351, 24844, 40204, 65057, 105270, 170336, 275615, 445960, 721584, 1167553, 1889146, 3056708, 4945863, 8002580, 12948452, 20951041, 33899502, 54850552, 88750063, 143600624, 232350696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
This is the sequence A(0,1;1,1;9) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + a(n-2) + 9 with a(0)=0 and a(1)=1.
O.g.f.: x*(1+8*x)/((1-x)*(1-x-x^2)).
a(n) = 2*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=10 (Observation by G. Detlefs).
(End)
a(n) = -9 + ( (11 + 9*sqrt(5))*(1 + sqrt(5))^n - (11 - 9*sqrt(5))*(1 - sqrt(5))^n )/(2^(n+1)*sqrt(5)). - Colin Barker, Jul 13 2017
a(n) = Fibonacci(n+3) + 7*Fibonacci(n+1) - 9. - G. C. Greubel, Apr 25 2022
|
|
MATHEMATICA
|
CoefficientList[Series[x*(1+8*x)/((1-x)*(1-x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Jul 13 2017 *)
|
|
PROG
|
(PARI) concat(0, Vec(x*(1+8*x)/((1-x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
(Magma) [Lucas(n+2) +6*Fibonacci(n+1) -9: n in [0..50]]; // G. C. Greubel, Apr 25 2022
(SageMath) [fibonacci(n+3) +7*fibonacci(n+1) -9 for n in (0..50)] # G. C. Greubel, Apr 25 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|