login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266087 Alternating sum of 11-gonal (or hendecagonal) numbers. 1
0, -1, 10, -20, 38, -57, 84, -112, 148, -185, 230, -276, 330, -385, 448, -512, 584, -657, 738, -820, 910, -1001, 1100, -1200, 1308, -1417, 1534, -1652, 1778, -1905, 2040, -2176, 2320, -2465, 2618, -2772, 2934, -3097, 3268, -3440, 3620, -3801, 3990, -4180 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

OEIS Wiki, Figurate numbers

Index entries for linear recurrences with constant coefficients, signature (-2,0,2,1).

FORMULA

G.f.: -x*(1 - 8*x)/((1 - x)*(1 + x)^3).

a(n) = ((18*n^2 + 4*n - 7)*(-1)^n + 7)/8.

a(n) = Sum_{k = 0..n} (-1)^k*A051682(k).

Lim_{n -> infinity} a(n + 1)/a(n) = -1.

E.g.f.: (1/4)*(9*x^2 - 11*x)*cosh(x) - (1/4)*(9*x^2 - 11*x - 7)*sinh(x). - G. C. Greubel, Jan 27 2016

MATHEMATICA

Table[((18 n^2 + 4 n - 7) (-1)^n + 7)/8, {n, 0, 43}]

CoefficientList[Series[(x - 8 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)

PROG

(MAGMA) [(18*(-1)^n*n^2 + 4*(-1)^n*n - 7*(-1)^n + 7)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015

(PARI) x='x+O('x^100); concat(0, Vec(-x*(1-8*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

CROSSREFS

Cf. A006578, A007586, A035608, A051682, A083392, A089594.

Sequence in context: A048030 A048011 A188334 * A047881 A172172 A275245

Adjacent sequences:  A266084 A266085 A266086 * A266088 A266089 A266090

KEYWORD

sign,easy

AUTHOR

Ilya Gutkovskiy, Dec 21 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 06:29 EDT 2018. Contains 316520 sequences. (Running on oeis4.)