login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sums of NW-SE diagonals of triangle A172171.
2

%I #23 Apr 25 2022 08:04:22

%S 0,1,10,20,39,68,116,193,318,520,847,1376,2232,3617,5858,9484,15351,

%T 24844,40204,65057,105270,170336,275615,445960,721584,1167553,1889146,

%U 3056708,4945863,8002580,12948452,20951041,33899502,54850552,88750063,143600624,232350696

%N Sums of NW-SE diagonals of triangle A172171.

%C This is the sequence A(0,1;1,1;9) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - _Wolfdieter Lang_, Oct 18 2010

%H Colin Barker, <a href="/A172172/b172172.txt">Table of n, a(n) for n = 0..1000</a>

%H Wolfdieter Lang, <a href="/A172172/a172172.pdf">Notes on certain inhomogeneous three term recurrences.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1).

%F a(n) = a(n-1) + a(n-2) + 9 with a(0)=0 and a(1)=1.

%F From _Wolfdieter Lang_, Oct 18 2010: (Start)

%F O.g.f.: x*(1+8*x)/((1-x)*(1-x-x^2)).

%F a(n) = 2*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=10 (Observation by G. Detlefs).

%F (End)

%F a(n+1) - a(n) = A022099(n). - _R. J. Mathar_, Apr 22 2013

%F a(n) = -9 + ( (11 + 9*sqrt(5))*(1 + sqrt(5))^n - (11 - 9*sqrt(5))*(1 - sqrt(5))^n )/(2^(n+1)*sqrt(5)). - _Colin Barker_, Jul 13 2017

%F a(n) = Fibonacci(n+3) + 7*Fibonacci(n+1) - 9. - _G. C. Greubel_, Apr 25 2022

%t CoefficientList[Series[x*(1+8*x)/((1-x)*(1-x-x^2)), {x,0,50}], x] (* _G. C. Greubel_, Jul 13 2017 *)

%o (PARI) concat(0, Vec(x*(1+8*x)/((1-x)*(1-x-x^2)) + O(x^50))) \\ _Colin Barker_, Jul 13 2017

%o (Magma) [Lucas(n+2) +6*Fibonacci(n+1) -9: n in [0..50]]; // _G. C. Greubel_, Apr 25 2022

%o (SageMath) [fibonacci(n+3) +7*fibonacci(n+1) -9 for n in (0..50)] # _G. C. Greubel_, Apr 25 2022

%Y Cf. A000032, A000045, A172171.

%K nonn,easy

%O 0,3

%A _Mark Dols_, Jan 28 2010

%E Wrong offset 1 changed into 0 _Wolfdieter Lang_, Oct 18 2010