OFFSET
1,3
COMMENTS
Binomial transform of A017173.
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
EXAMPLE
Triangle begins:
1;
1, 10;
1, 11, 19;
1, 12, 30, 28;
1, 13, 42, 58, 37;
1, 14, 55, 100, 95, 46;
1, 15, 69, 155, 195, 141, 55;
1, 16, 84, 224, 350, 336, 196, 64;
1, 17, 100, 308, 574, 686, 532, 260, 73;
1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82;
1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125, 415, 91;
1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Apr 24 2022 *)
PROG
(SageMath)
@CachedFunction
def T(n, k):
if (k<1 or k>n): return 0
elif (k==1): return 1
elif (n==2 and k==2): return 10
else: return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-1) - T(n-2, k-2)
flatten([[T(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 24 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mark Dols, Jan 28 2010
EXTENSIONS
More terms from Philippe Deléham, Dec 25 2013
STATUS
approved