login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172171
(1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).
5
1, 1, 10, 1, 11, 19, 1, 12, 30, 28, 1, 13, 42, 58, 37, 1, 14, 55, 100, 95, 46, 1, 15, 69, 155, 195, 141, 55, 1, 16, 84, 224, 350, 336, 196, 64, 1, 17, 100, 308, 574, 686, 532, 260, 73, 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82
OFFSET
1,3
COMMENTS
Binomial transform of A017173.
FORMULA
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(n,1) = 1, T(2,2) = 10, T(n,k) = 0 if k < 1 or if k > n.
Sum_{k=0..n} T(n, k) = A139634(n).
T(2*n-1, n) = A050489(n).
EXAMPLE
Triangle begins:
1;
1, 10;
1, 11, 19;
1, 12, 30, 28;
1, 13, 42, 58, 37;
1, 14, 55, 100, 95, 46;
1, 15, 69, 155, 195, 141, 55;
1, 16, 84, 224, 350, 336, 196, 64;
1, 17, 100, 308, 574, 686, 532, 260, 73;
1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82;
1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125, 415, 91;
1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Apr 24 2022 *)
PROG
(SageMath)
@CachedFunction
def T(n, k):
if (k<1 or k>n): return 0
elif (k==1): return 1
elif (n==2 and k==2): return 10
else: return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-1) - T(n-2, k-2)
flatten([[T(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 24 2022
CROSSREFS
Cf. A007318, A017173, A050489 (central terms), A093644, A139634 (row sums).
Sequence in context: A297418 A297352 A370401 * A327723 A377164 A164899
KEYWORD
nonn,tabl
AUTHOR
Mark Dols, Jan 28 2010
EXTENSIONS
More terms from Philippe Deléham, Dec 25 2013
STATUS
approved