login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).
5

%I #14 Apr 25 2022 08:03:38

%S 1,1,10,1,11,19,1,12,30,28,1,13,42,58,37,1,14,55,100,95,46,1,15,69,

%T 155,195,141,55,1,16,84,224,350,336,196,64,1,17,100,308,574,686,532,

%U 260,73,1,18,117,408,882,1260,1218,792,333,82

%N (1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).

%C Binomial transform of A017173.

%H G. C. Greubel, <a href="/A172171/b172171.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(n,1) = 1, T(2,2) = 10, T(n,k) = 0 if k < 1 or if k > n.

%F Sum_{k=0..n} T(n, k) = A139634(n).

%F T(2*n-1, n) = A050489(n).

%e Triangle begins:

%e 1;

%e 1, 10;

%e 1, 11, 19;

%e 1, 12, 30, 28;

%e 1, 13, 42, 58, 37;

%e 1, 14, 55, 100, 95, 46;

%e 1, 15, 69, 155, 195, 141, 55;

%e 1, 16, 84, 224, 350, 336, 196, 64;

%e 1, 17, 100, 308, 574, 686, 532, 260, 73;

%e 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82;

%e 1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125, 415, 91;

%e 1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;

%t T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]];

%t Table[T[n, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 24 2022 *)

%o (SageMath)

%o @CachedFunction

%o def T(n,k):

%o if (k<1 or k>n): return 0

%o elif (k==1): return 1

%o elif (n==2 and k==2): return 10

%o else: return T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2)

%o flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Apr 24 2022

%Y Cf. A007318, A017173, A050489 (central terms), A093644, A139634 (row sums).

%K nonn,tabl

%O 1,3

%A _Mark Dols_, Jan 28 2010

%E More terms from _Philippe Deléham_, Dec 25 2013