login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275245
Numbers k such that phi(k) divides k^2 while phi(k) does not divide k.
1
10, 20, 40, 42, 50, 60, 80, 84, 100, 114, 120, 126, 136, 156, 160, 168, 180, 200, 220, 228, 240, 250, 252, 272, 294, 300, 312, 320, 336, 342, 360, 378, 400, 440, 444, 456, 468, 480, 500, 504, 540, 544, 588, 600, 624, 640, 672, 684, 720, 756, 800, 816
OFFSET
1,1
LINKS
EXAMPLE
10 is a term because phi(10) = 4; 10 mod 4 = 2 and 10^2 mod 4 = 0.
MATHEMATICA
Select[Range[10^3], Function[k, And[Divisible[#^2, k], ! Divisible[#, k]]]@ EulerPhi@ # &] (* Michael De Vlieger, Jul 21 2016 *)
PROG
(PARI) isok(n) = (n % eulerphi(n) != 0) && (n^2 % eulerphi(n) == 0)
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Jul 21 2016
STATUS
approved