login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).
3

%I #19 Sep 09 2024 09:33:47

%S 0,1,7,100,2257,70021,2768740,133164109,7546722487,492531820066,

%T 36381833190223,3000677194970137,273342303933512362,

%U 27256107730344331879,2952882035628632383975,345384835617231362018764,43378466647737203462409829,5822506028894124326533926193

%N E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F E.g.f.: -LambertW(3 * (1 - exp(x)))/3.

%F a(n) = Sum_{k=1..n} (3 * k)^(k-1) * Stirling2(n,k).

%F a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3 * exp(n) * log(1 + exp(-1)/3)^(n - 1/2)). - _Vaclav Kotesovec_, Nov 14 2022

%F E.g.f.: Series_Reversion( log(1 + x * exp(-3*x)) ). - _Seiichi Manyama_, Sep 09 2024

%o (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*(1-exp(x)))/3)))

%o (PARI) a(n) = sum(k=1, n, (3*k)^(k-1)*stirling(n, k, 2));

%Y Cf. A048802, A357335.

%Y Cf. A349525, A356001.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Sep 24 2022