login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083483
Number of forests with two connected components in the complete graph K_{n}.
7
0, 1, 3, 15, 110, 1080, 13377, 200704, 3542940, 72000000, 1656409535, 42568187904, 1208912928522, 37603105146880, 1271514111328125, 46443371157258240, 1822442358054692408, 76461926986744528896, 3415753581721829617275
OFFSET
1,3
COMMENTS
Note that the above sequence is dominated by the sequence n^{n-2} (n > 0), A000272, which enumerates the number of spanning trees in K_{n} : 1, 1, 3, 16, 125, 1296, 16807, 262144, ... This is a consequence of the result in [EKT] which shows that the sequence of independent set numbers of cycle matroid of K_{n} is (strictly) monotone increasing (when n > 3).
REFERENCES
W. Kook, Categories of acyclic graphs and automorphisms of free groups, Ph.D. thesis (G. Carlsson, advisor), Stanford University, 1996.
LINKS
N. Eaton, W. Kook, and L. Thoma, Monotonicity for complete graphs, preprint
A. Kassel, R. Kenyon, and W. Wu, Random two-component spanning forests, Ann. Inst. H. Poincaré Probab. Statist., 51 (2015), 1457-1464.
C. J. Liu and Yutze Chow, On operator and formal sum methods for graph enumeration problems, SIAM J. Algebraic Discrete Methods, 5 (1984), no. 3, 384--406. MR0752043 (86d:05059). See Eq. (47). - From N. J. A. Sloane, Apr 09 2014
FORMULA
E.g.f.: T(x)^{2}/2!, where T(x) is the e.g.f. for the number of spanning trees in K_{n}, i.e., T(x) = Sum_{i>=1} i^(i-2)*x^i/i!.
E.g.f.: (1/8)*LambertW(-x)^2*(2+LambertW(-x))^2. - Vladeta Jovovic, Jul 08 2003
a(n) = n^(n-4)*(n-1)*(n+6)/2. - Vaclav Kotesovec, Oct 18 2013
MAPLE
f:=n->(n-1)!*n^(n-4)*(n+6)/(2*(n-2)!); [seq(f(n), n=2..30)]; # N. J. A. Sloane, Apr 09 2014
MATHEMATICA
(* first 20 terms starting with n=1 *) T := Sum[i^(i - 2)*(x^i)/i!, {i, 1, 20}]; T2 := Expand[(T^{2})/2! ]; C2[i_] := Coefficient[T2, x^{i}]*i!; M := MatrixForm[Table[C2[i], {i, 20}]]; M
Table[n^(n - 4) (n - 1) (n + 6)/2, {n, 1, 40}] (* Vincenzo Librandi, Apr 10 2014 *)
PROG
(Magma) [n^(n-4)*(n-1)*(n+6)/2 : n in [1..20]]; // Vincenzo Librandi, Apr 10 2014
(PARI) for(n=1, 30, print1(n^(n-4)*(n-1)*(n+6)/2, ", ")) \\ G. C. Greubel, Nov 14 2017
CROSSREFS
Column m=2 of A105599. A diagonal of A138464. - Alois P. Heinz, Apr 10 2014
Sequence in context: A217061 A054201 A090355 * A089468 A109498 A142967
KEYWORD
nonn
AUTHOR
Woong Kook (andrewk(AT)math.uri.edu), Jun 08 2003
EXTENSIONS
Edited by N. J. A. Sloane, Apr 09 2014
STATUS
approved