The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083483 Number of forests with two connected components in the complete graph K_{n}. 6
 0, 1, 3, 15, 110, 1080, 13377, 200704, 3542940, 72000000, 1656409535, 42568187904, 1208912928522, 37603105146880, 1271514111328125, 46443371157258240, 1822442358054692408, 76461926986744528896, 3415753581721829617275 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Note that the above sequence is dominated by the sequence n^{n-2} (n >0), A000272, which enumerates the number of spanning trees in K_{n} : 1, 1, 3, 16, 125, 1296, 16807, 262144, ... This is a consequence of the result in [EKT] which shows that the sequence of independent set numbers of cycle matroid of K_{n} is (strictly) monotone increasing (when n > 3). REFERENCES W. Kook, Categories of acyclic graphs and automorphisms of free groups, Ph.D. thesis (G. Carlsson, advisor), Stanford University, 1996 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 N. Eaton, W. Kook, L. Thoma, Monotonicity for complete graphs, preprint C. J. Liu and Yutze Chow, On operator and formal sum methods for graph enumeration problems, SIAM J. Algebraic Discrete Methods, 5 (1984), no. 3, 384--406. MR0752043 (86d:05059). See Eq. (47). - From N. J. A. Sloane, Apr 09 2014 FORMULA E.g.f.: T(x)^{2}/2!, where T(x) is the e.g.f. for the number of spanning trees in K_{n}, i.e. T(x)= sum_{i>= 1}i^{i-2}*x^{i}/i!. E.g.f.: 1/8*LambertW(-x)^2*(2+LambertW(-x))^2. - Vladeta Jovovic, Jul 08 2003 a(n) = n^(n-4)*(n-1)*(n+6)/2. - Vaclav Kotesovec, Oct 18 2013 MAPLE f:=n->(n-1)!*n^(n-4)*(n+6)/(2*(n-2)!); [seq(f(n), n=2..30)]; # N. J. A. Sloane, Apr 09 2014 MATHEMATICA (* first 20 terms starting with n=1 *) T := Sum[i^(i - 2)*(x^i)/i!, {i, 1, 20}]; T2 := Expand[(T^{2})/2! ]; C2[i_] := Coefficient[T2, x^{i}]*i!; M := MatrixForm[Table[C2[i], {i, 20}]]; M Table[n^(n - 4) (n - 1) (n + 6)/2, {n, 1, 40}] (* Vincenzo Librandi, Apr 10 2014 *) PROG (MAGMA) [n^(n-4)*(n-1)*(n+6)/2 : n in [1..20]]; // Vincenzo Librandi, Apr 10 2014 (PARI) for(n=1, 30, print1(n^(n-4)*(n-1)*(n+6)/2, ", ")) \\ G. C. Greubel, Nov 14 2017 CROSSREFS Cf. A000272, A239910. Column m=2 of A105599. A diagonal of A138464. - Alois P. Heinz, Apr 10 2014 Sequence in context: A217061 A054201 A090355 * A089468 A109498 A142967 Adjacent sequences:  A083480 A083481 A083482 * A083484 A083485 A083486 KEYWORD nonn AUTHOR Woong Kook (andrewk(AT)math.uri.edu), Jun 08 2003 EXTENSIONS Edited by N. J. A. Sloane, Apr 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 04:17 EDT 2021. Contains 344980 sequences. (Running on oeis4.)