login
A083486
Triangle read by rows in which the n-th row contains the smallest set of n distinct numbers beginning with n with a product which is a square.
3
1, 2, 8, 3, 4, 12, 4, 5, 6, 30, 5, 6, 7, 8, 105, 6, 7, 8, 9, 10, 210, 7, 8, 9, 10, 11, 12, 1155, 8, 9, 10, 11, 12, 13, 14, 30030, 9, 10, 11, 12, 13, 14, 15, 16, 1001, 10, 11, 12, 13, 14, 15, 16, 17, 18, 34034, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 323323, 12, 13, 14, 15, 16, 17
OFFSET
1,2
COMMENTS
Presumably "smallest set" means we start with n-1 consecutive numbers in each row and add the last element to satisfy the requirement on the square, the last element is obtained from the prime factorization of the product of the first n-1 numbers by reducing all prime exponents modulo 2. If the result is <= the (n-1)-st term, multiply by j^2, j=2,3,4,.. until it is. - R. J. Mathar, Apr 05 2007
EXAMPLE
1
2 8
3 4 12
4 5 6 30
5 6 7 8 105
...
MAPLE
A083486 := proc(n, m) local fs, k, resu, extr ; if m < n then n+m-1; else fs := ifactors(mul( A083486(n, k), k=1..n-1))[2] ; resu := mul( op(1, op(k, fs))^(op(2, op(k, fs)) mod 2), k=1..nops(fs)) ; extr := 1 ; while extr^2*resu <= A083486(n, n-1) do extr := extr+1 ; od ; RETURN(resu*extr^2) ; fi ; end: for n from 1 to 15 do for m from 1 to n do printf("%a ", A083486(n, m)) ; od ; od ; # R. J. Mathar, Apr 05 2007
MATHEMATICA
T[n_, m_] := Module[{fs, resu, extr }, If[m < n, n+m-1, fs = FactorInteger[Product[T[n, k], {k, 1, n-1}]]; resu = Product[fs[[k, 1]]^Mod[fs[[k, 2]], 2], {k, 1, Length[fs]}]; extr = 1; While[extr^2*resu <= T[n, n-1], extr++]; resu*extr^2]];
Table[T[n, m], {n, 1, 15}, {m, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A016640 A379829 A321984 * A076031 A076596 A081967
KEYWORD
nonn,tabl
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003
EXTENSIONS
Corrected and extended by R. J. Mathar, Apr 05 2007
Example corrected by Harvey P. Dale, Aug 05 2021
STATUS
approved