login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054201
a(n) = (n-1)! * Sum_{k=1..n} k^k/k!.
3
1, 3, 15, 109, 1061, 13081, 196135, 3470097, 70807497, 1637267473, 42310099331, 1208419463329, 37799118682429, 1285103316125721, 47184372451150719, 1860687091374107761, 78432185337652592657, 3519258710478790607137, 167474007086529472461307
OFFSET
1,2
LINKS
FORMULA
-LambertW(-x)/(1+LambertW(-x))/(1-x) = Sum_{n>=1} a(n)*x^n/(n-1)!. - Vladeta Jovovic, Aug 26 2002
a(n) ~ exp(1)/(exp(1)-1) * n^(n-1). - Vaclav Kotesovec, Oct 18 2013
a(n) = (n-1)!*Sum_{i=1..n} Product_{j=1..i} i/j. - Pedro Caceres, Apr 19 2019
EXAMPLE
a(3) = 2! *(1^1/1! + 2^2/2! + 3^3/3!) = 2 *(1/1 + 4/2 + 27/6) = 15.
MATHEMATICA
Table[(n-1)!*Sum[k^k/k!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 18 2013 *)
PROG
(PARI) vector(20, n, (n-1)!*sum(k=1, n, k^k/k!)) \\ G. C. Greubel, Jul 31 2019
(Magma) F:=Factorial; [F(n-1)*(&+[k^k/F(k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Jul 31 2019
(Sage) f=factorial; [f(n-1)*sum(k^k/f(k) for k in (1..n)) for n in (1..20)] # G. C. Greubel, Jul 31 2019
(GAP) F:=Factorial;; List([1..20], n-> F(n-1)*Sum([1..n], k-> k^k/F(k))); # G. C. Greubel, Jul 31 2019
CROSSREFS
Cf. A054202.
Sequence in context: A153305 A110328 A217061 * A090355 A083483 A089468
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Apr 29 2000
STATUS
approved