OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..385
FORMULA
-LambertW(-x)/(1+LambertW(-x))/(1-x) = Sum_{n>=1} a(n)*x^n/(n-1)!. - Vladeta Jovovic, Aug 26 2002
a(n) ~ exp(1)/(exp(1)-1) * n^(n-1). - Vaclav Kotesovec, Oct 18 2013
a(n) = (n-1)!*Sum_{i=1..n} Product_{j=1..i} i/j. - Pedro Caceres, Apr 19 2019
EXAMPLE
a(3) = 2! *(1^1/1! + 2^2/2! + 3^3/3!) = 2 *(1/1 + 4/2 + 27/6) = 15.
MATHEMATICA
Table[(n-1)!*Sum[k^k/k!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 18 2013 *)
PROG
(PARI) vector(20, n, (n-1)!*sum(k=1, n, k^k/k!)) \\ G. C. Greubel, Jul 31 2019
(Magma) F:=Factorial; [F(n-1)*(&+[k^k/F(k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Jul 31 2019
(Sage) f=factorial; [f(n-1)*sum(k^k/f(k) for k in (1..n)) for n in (1..20)] # G. C. Greubel, Jul 31 2019
(GAP) F:=Factorial;; List([1..20], n-> F(n-1)*Sum([1..n], k-> k^k/F(k))); # G. C. Greubel, Jul 31 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Apr 29 2000
STATUS
approved