login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273796
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 942", based on the 5-celled von Neumann neighborhood.
0
1, 5, 21, 89, 385, 1649, 6961, 29009, 119665, 489809, 1993201, 8075729, 32613745, 131391569, 528384241, 2122007249
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = 2*4^n - 16*3^(n-2) + 2^n + 1, n>1. - Lars Blomberg, Jul 25 2016
Conjectures from Colin Barker, Dec 01 2016: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n>5.
G.f.: (1 - 5*x + 6*x^2 + 4*x^3 + 4*x^4 - 16*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=942; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A169648.
Sequence in context: A273860 A099843 A015448 * A035011 A113987 A188707
KEYWORD
nonn,more
AUTHOR
Robert Price, May 30 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 25 2016
STATUS
approved