The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186446 Expansion of 1/(1 - 7*x + 2*x^2). 10
1, 7, 47, 315, 2111, 14147, 94807, 635355, 4257871, 28534387, 191224967, 1281505995, 8588092031, 57553632227, 385699241527, 2584787426235, 17322113500591, 116085219651667, 777952310560487, 5213495734620075, 34938565521219551 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The first differences are in A122074.
a(n+1) equals the number of words of length n over {0,1,2,3,4,5,6} avoiding 01 and 02. - Milan Janjic, Dec 17 2015
LINKS
Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
FORMULA
G.f.: 1/(1-7*x+2*x^2).
a(n) = ((7+sqrt(41))^(1+n)-(7-sqrt(41))^(1+n))/(2^(1+n)*sqrt(41)).
a(n) = 7*a(n-1)-2*a(n-2), with a(0)=1, a(1)=7.
MATHEMATICA
CoefficientList[Series[1 / (1 - 7 x + 2 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{7, -2}, {1, 7}, 30] (* Harvey P. Dale, Aug 06 2017 *)
PROG
(Magma) m:=21; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-7*x+2*x^2)));
(Magma) I:=[1, 7]; [n le 2 select I[n] else 7*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 19 2013
(PARI) Vec(1/(1-7*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
CROSSREFS
For similar closed formulas: A015446 [((1+sqrt(41))^(1+n)-(1-sqrt(41))^(1+n))/(2^(1+n)*sqrt(41))], A015525 [((3+sqrt(41))^n-(3-sqrt(41))^n)/(2^n*sqrt(41))], A015537 [((5+sqrt(41))^n-(5-sqrt(41))^n)/(2^n*sqrt(41))], A178869 [((9+sqrt(41))^n-(9-sqrt(41))^n)/(2^n*sqrt(41))].
Same recurrence as in A122074, A003771.
Sequence in context: A085352 A125370 A163346 * A244830 A126528 A214992
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 21 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 08:47 EDT 2024. Contains 372815 sequences. (Running on oeis4.)