The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218988 Power floor sequence of 2+sqrt(8). 3
 4, 19, 91, 439, 2119, 10231, 49399, 238519, 1151671, 5560759, 26849719, 129641911, 625966519, 3022433719, 14593600951, 70464138679, 340230958519, 1642780388791, 7932045389239, 38299303112119, 184925394005431, 892898788470199, 4311296729902519 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p1(r) = 3.8983688904482395322594950087206... See A218989 for the power floor function, p4. For comparison with p1, limit(p4(r)/p1(r) = 4/3. LINKS Clark Kimberling, Table of n, a(n) for n = 0..250 Index entries for linear recurrences with constant coefficients, signature (5,0,-4). FORMULA a(n) = floor(x*a(n-1)), where x=2+sqrt(8), a(0) = floor(x). a(n) = 5*a(n-1) - 4*a(n-3). G.f.: (4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). [Corrected by Colin Barker, Nov 13 2017] a(n) = (1/28)*(4 + (54-39*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(54+39*sqrt(2))). - Colin Barker, Nov 13 2017 EXAMPLE a(0) = [r] = 4, where r = 2+sqrt(8). a(1) = [4*r] = 19; a(2) = [19*r] = 91. MATHEMATICA x = 2 + Sqrt[8]; z = 30; (* z = # terms in sequences *) f[x_] := Floor[x]; c[x_] := Ceiling[x]; p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; p1[n_] := f[x*p1[n - 1]] p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] p4[n_] := c[x*p4[n - 1]] t1 = Table[p1[n], {n, 0, z}] (* A218988 *) t2 = Table[p2[n], {n, 0, z}] (* A057087 *) t3 = Table[p3[n], {n, 0, z}] (* A086347 *) t4 = Table[p4[n], {n, 0, z}] (* A218989 *) PROG (PARI) Vec((4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017 CROSSREFS Cf. A214992, A057087, A086347, A218989. Sequence in context: A229242 A087449 A004253 * A151253 A121179 A181950 Adjacent sequences: A218985 A218986 A218987 * A218989 A218990 A218991 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)