login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024551
a(n) = floor(a(n-1)/(sqrt(5) - 2)) for n > 0 and a(0) = 1.
3
1, 4, 16, 67, 283, 1198, 5074, 21493, 91045, 385672, 1633732, 6920599, 29316127, 124185106, 526056550, 2228411305, 9439701769, 39987218380, 169388575288, 717541519531, 3039554653411, 12875760133174, 54542595186106, 231046140877597
OFFSET
0,2
FORMULA
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3). - Clark Kimberling, Aug 16 2012
G.f.: (-x^2-x+1)/[(1-x)(1-4x-x^2)].
a(n) = (3*Fibonacci(3*n+2) + 1)/4 = 1 + 3*Sum_{k=0..n} A001076(k). - Ehren Metcalfe, Apr 15 2019
MATHEMATICA
a[0] = 1;
a[n_] := Floor[a[n - 1]/FractionalPart[Sqrt[5]]]
Table[a[n], {n, 0, 60}]
(* Clark Kimberling, Aug 16 2012 *)
a[0]=1;
a[1]=4;
a[2]=16;
a[n_]:=Floor[a[n-1]^2/a[n-2]]+3
Table[a[n], {n, 0, 60}]
With[{c=Sqrt[5]-2}, NestList[Floor[#/c]&, 1, 30]] (* Harvey P. Dale, Jul 18 2018 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, -3, 5]^n*[1; 4; 16])[1, 1] \\ Charles R Greathouse IV, Jan 20 2017
(PARI) step(n)=2*n + sqrtint(5*n^2)
a(n)=if(n, step(a(n-1)), 1) \\ Charles R Greathouse IV, Jan 20 2017
CROSSREFS
Sequence in context: A218645 A273582 A183275 * A261048 A091153 A270765
KEYWORD
nonn,easy
STATUS
approved