The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218992 Power ceiling sequence of 3+sqrt(10). 3
 7, 44, 272, 1677, 10335, 63688, 392464, 2418473, 14903303, 91838292, 565933056, 3487436629, 21490552831, 132430753616, 816075074528, 5028881200785, 30989362279239, 190965054876220, 1176779691536560, 7251643204095581 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n.  The present sequence is a(n,r), where r = 3+sqrt(10), and the limit p4(r) = 7.16724801485749657... See A218991 for the power floor function, p1(x); for comparison of p1 and p4, we have limit(p4(r)/p1(r) = (3+sqrt(10))/5 = 1.23245553... LINKS Clark Kimberling, Table of n, a(n) for n = 0..250 Index entries for linear recurrences with constant coefficients, signature (7,-5,-1). FORMULA a(n) = ceiling(r*a(n-1)), where r=3+sqrt(10), a(0) = ceiling(r). a(n) = 7*a(n-1) - 5*a(n-2) - a(n-3). G.f.:  (7 - 5*x - x^2)/(1 - 7*x + 5*x^2 + x^3). a(n) = ((5+sqrt(10))*(3-sqrt(10))^(n+3)+(5-sqrt(10))*(3+sqrt(10))^(n+3)-10)/60. [Bruno Berselli, Nov 22 2012] EXAMPLE a(0) = ceiling(r) = 7, where r = 3+sqrt(10); a(1) = ceiling(7*r) = 44; a(2) = ceiling(44*r) = 272. MATHEMATICA (See A218991.) LinearRecurrence[{7, -5, -1}, {7, 44, 272}, 20] (* Harvey P. Dale, Sep 22 2016 *) PROG (MAGMA) [IsZero(n) select Ceiling(r) else Ceiling(r*Self(n)) where r is 3+Sqrt(10): n in [0..20]]; // Bruno Berselli, Nov 22 2012 CROSSREFS Cf. A214992, A005668, A015451, A218991. Sequence in context: A037531 A178719 A094113 * A190974 A027279 A099464 Adjacent sequences:  A218989 A218990 A218991 * A218993 A218994 A218995 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 01:39 EDT 2021. Contains 347504 sequences. (Running on oeis4.)