login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347032
Primes that are of the form p^k-2 for some k > 3 and prime p.
1
79, 241, 727, 2399, 14639, 19681, 28559, 371291, 707279, 823541, 1771559, 2825759, 3418799, 5764799, 7890479, 12117359, 24137567, 28398239, 28629149, 47458319, 104060399, 1073283119, 2565726407, 3262808639, 3373402559, 5887339439, 6103515623, 7370050799, 9354951839, 10779215327, 13841287199
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 727 is a term because 727 = 3^6-2, 6 > 3 and 727 and 3 are prime.
MAPLE
N:= 10^12: # for terms <= N
R:= {}:
p:= 1:
do
p:= nextprime(p);
if p^4-2 > N then break fi;
for k from 4 to ilog[p](N) do
r:= p^k - 2;
if isprime(r) then R:= R union {r} fi;
od
od:
sort(convert(R, list));
PROG
(PARI) isok(p) = isprime(p) && (isprimepower(p+2) > 3); \\ Michel Marcus, Aug 16 2021
CROSSREFS
Sequence in context: A257933 A258098 A141964 * A142285 A265599 A076815
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 11 2021
STATUS
approved