login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214021
Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
7
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 6, 6, 1, 1, 1, 0, 1, 22, 72, 18, 1, 1, 1, 0, 1, 92, 1289, 960, 57, 1, 1, 1, 0, 1, 422, 29889, 93964, 14257, 186, 1, 1, 1, 0, 1, 2074, 831174, 13652068, 8203915, 228738, 622, 1, 1
OFFSET
0,19
COMMENTS
A standard Young tableau (SYT) where entries i and i+1 never appear in the same row is called a nonconsecutive tableau.
LINKS
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
Wikipedia, Young tableau
EXAMPLE
A(2,4) = 1:
[1 3 5 7]
[2 4 6 8].
A(4,2) = 6:
[1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
[2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
[3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
[4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 22, 92, 422, ...
1, 1, 6, 72, 1289, 29889, 831174, ...
1, 1, 18, 960, 93964, 13652068, 2621897048, ...
1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
MAPLE
b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
Rows n=0+2, 3-4 give: A000012, A001181(k) for k>0, A214875.
Columns k=0+1, 2, 3 give: A000012, A000957(n+1), A214159.
Main diagonal gives A264103.
Sequence in context: A117274 A221650 A140883 * A260516 A064744 A135997
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 01 2012
STATUS
approved