The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140883 Triangle T(n,k) = A053120(n,k)+A053120(n,n-k) of symmetrized Chebyshev coefficients, read by rows, 0<=k<=n. 0
 2, 1, 1, 1, 0, 1, 4, -3, -3, 4, 9, 0, -16, 0, 9, 16, 5, -20, -20, 5, 16, 31, 0, -30, 0, -30, 0, 31, 64, -7, -112, 56, 56, -112, -7, 64, 129, 0, -288, 0, 320, 0, -288, 0, 129, 256, 9, -576, -120, 432, 432, -120, -576, 9, 256, 511, 0, -1230, 0, 720, 0, 720, 0, -1230, 0, 511 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are constantly two. LINKS FORMULA T(n,k) = T(n,n-k). EXAMPLE 2; 1, 1; 1, 0, 1; 4, -3, -3, 4; 9, 0, -16, 0, 9; 16, 5, -20, -20, 5, 16; 31, 0, -30, 0, -30, 0, 31; 64, -7, -112, 56, 56, -112, -7, 64; 129, 0, -288, 0, 320, 0, -288, 0, 129; 256, 9, -576, -120, 432, 432, -120, -576, 9, 256; 511, 0, -1230, 0, 720, 0, 720, 0, -1230, 0, 511; MATHEMATICA Clear[p, x, n, m, a]; p[x_, n_] := ChebyshevT[n, x] + ExpandAll[x^n*ChebyshevT[n, 1/x]]; Table[p[x, n], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] CROSSREFS Cf. A053120. Sequence in context: A348652 A117274 A221650 * A214021 A260516 A064744 Adjacent sequences:  A140880 A140881 A140882 * A140884 A140885 A140886 KEYWORD tabl,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Jul 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 1 12:30 EDT 2022. Contains 354973 sequences. (Running on oeis4.)