Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Jan 22 2020 21:02:35
%S 1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,2,1,1,1,0,1,6,6,1,1,1,0,1,22,72,
%T 18,1,1,1,0,1,92,1289,960,57,1,1,1,0,1,422,29889,93964,14257,186,1,1,
%U 1,0,1,2074,831174,13652068,8203915,228738,622,1,1
%N Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C A standard Young tableau (SYT) where entries i and i+1 never appear in the same row is called a nonconsecutive tableau.
%H Alois P. Heinz, <a href="/A214021/b214021.txt">Antidiagonals n = 0..23, flattened</a>
%H T. Y. Chow, H. Eriksson and C. K. Fan, <a href="https://doi.org/10.37236/1895">Chess tableaux</a>, Elect. J. Combin., 11 (2) (2005), #A3.
%H S. Dulucq and O. Guibert, <a href="https://doi.org/10.1016/S0012-365X(96)83009-3">Stack words, standard tableaux and Baxter permutations</a>, Disc. Math. 157 (1996), 91-106.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%e A(2,4) = 1:
%e [1 3 5 7]
%e [2 4 6 8].
%e A(4,2) = 6:
%e [1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
%e [2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
%e [3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
%e [4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 0, 0, 0, 0, 0, ...
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 2, 6, 22, 92, 422, ...
%e 1, 1, 6, 72, 1289, 29889, 831174, ...
%e 1, 1, 18, 960, 93964, 13652068, 2621897048, ...
%e 1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
%p b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
%p add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
%p `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
%p end:
%p A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
%p seq(seq(A(n, d-n), n=0..d), d=0..12);
%t b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 09 2013, translated from Maple *)
%Y Rows n=0+2, 3-4 give: A000012, A001181(k) for k>0, A214875.
%Y Columns k=0+1, 2, 3 give: A000012, A000957(n+1), A214159.
%Y Main diagonal gives A264103.
%Y Cf. A214020, A214088.
%K nonn,tabl
%O 0,19
%A _Alois P. Heinz_, Jul 01 2012