login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214020
Number A(n,k) of n X k chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 0, 22, 0, 22, 0, 1, 1, 1, 1, 5, 92, 324, 324, 92, 5, 1, 1, 1, 1, 0, 422, 0, 8716, 0, 422, 0, 1, 1, 1, 1, 14, 2074, 47570, 343234, 343234, 47570, 2074, 14, 1, 1
OFFSET
0,25
COMMENTS
A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells is called a chess tableau. The definition appears first in the article by Jonas Sjöstrand.
LINKS
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
Wikipedia, Young tableau
EXAMPLE
A(4,3) = A(3,4) = 6:
[1 4 7] [1 4 5] [1 2 3] [1 4 7] [ 1 4 7] [ 1 2 3]
[2 5 10] [2 7 10] [4 7 10] [2 5 10] [ 2 5 8] [ 4 5 6]
[3 8 11] [3 8 11] [5 8 11] [3 6 11] [ 3 6 9] [ 7 8 9]
[6 9 12] [6 9 12] [6 9 12] [8 9 12] [10 11 12] [10 11 12].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 1, 0, 2, 0, 5, ...
1, 1, 1, 2, 6, 22, 92, 422, ...
1, 1, 0, 6, 0, 324, 0, 47570, ...
1, 1, 2, 22, 324, 8716, 343234, 17423496, ...
1, 1, 0, 92, 0, 343234, 0, 8364334408, ...
1, 1, 5, 422, 47570, 17423496, 8364334408, 6873642982160, ...
MAPLE
b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1,
add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0,
args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs))
end:
A:= (n, k)-> `if`(n<k, A(k, n), `if`(k<2, 1, b(n$k))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[args_List] := b[args] = Module[{s = Total[args], nargs = Length[args]}, If[s == 0, 1, Sum[If[Mod[s + i - args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i + 1]]], b[ReplacePart[args, i -> args[[i]] - 1]], 0], {i, 1, nargs}]]]; A[n_, k_] := If[n < k, A[k, n], If[k < 2, 1, b[Array[n &, k]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A000108 (bisection of row 2), A001181 (row 3), A108774, A214021, A214088.
Sequence in context: A337930 A340691 A216658 * A029425 A219055 A025902
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 01 2012
STATUS
approved