login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of n X k chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
4

%I #31 Oct 05 2018 20:06:53

%S 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,2,0,1,1,1,1,2,6,6,2,

%T 1,1,1,1,0,22,0,22,0,1,1,1,1,5,92,324,324,92,5,1,1,1,1,0,422,0,8716,0,

%U 422,0,1,1,1,1,14,2074,47570,343234,343234,47570,2074,14,1,1

%N Number A(n,k) of n X k chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%C A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells is called a chess tableau. The definition appears first in the article by Jonas Sjöstrand.

%H Alois P. Heinz, <a href="/A214020/b214020.txt">Antidiagonals n = 0..24, flattened</a>

%H T. Y. Chow, H. Eriksson and C. K. Fan, <a href="http://www.combinatorics.org/Volume_11/Abstracts/v11i2a3.html">Chess tableaux</a>, Elect. J. Combin., 11 (2) (2005), #A3.

%H Jonas Sjöstrand, <a href="https://arxiv.org/abs/math/0309231v3">On the sign-imbalance of partition shapes</a>, arXiv:math/0309231v3 [math.CO], 2005.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%e A(4,3) = A(3,4) = 6:

%e [1 4 7] [1 4 5] [1 2 3] [1 4 7] [ 1 4 7] [ 1 2 3]

%e [2 5 10] [2 7 10] [4 7 10] [2 5 10] [ 2 5 8] [ 4 5 6]

%e [3 8 11] [3 8 11] [5 8 11] [3 6 11] [ 3 6 9] [ 7 8 9]

%e [6 9 12] [6 9 12] [6 9 12] [8 9 12] [10 11 12] [10 11 12].

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 0, 1, 0, 2, 0, 5, ...

%e 1, 1, 1, 2, 6, 22, 92, 422, ...

%e 1, 1, 0, 6, 0, 324, 0, 47570, ...

%e 1, 1, 2, 22, 324, 8716, 343234, 17423496, ...

%e 1, 1, 0, 92, 0, 343234, 0, 8364334408, ...

%e 1, 1, 5, 422, 47570, 17423496, 8364334408, 6873642982160, ...

%p b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1,

%p add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0,

%p args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs))

%p end:

%p A:= (n, k)-> `if`(n<k, A(k, n), `if`(k<2, 1, b(n$k))):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t b[args_List] := b[args] = Module[{s = Total[args], nargs = Length[args]}, If[s == 0, 1, Sum[If[Mod[s + i - args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i + 1]]], b[ReplacePart[args, i -> args[[i]] - 1]], 0], {i, 1, nargs}]]]; A[n_, k_] := If[n < k, A[k, n], If[k < 2, 1, b[Array[n &, k]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 21 2015, after _Alois P. Heinz_ *)

%Y Cf. A000108 (bisection of row 2), A001181 (row 3), A108774, A214021, A214088.

%K nonn,tabl

%O 0,25

%A _Alois P. Heinz_, Jul 01 2012