login
A053103
a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials).
7
1, 16, 352, 9856, 335104, 13404160, 616591360, 32062750720, 1859639541760, 119016930672640, 8331185147084800, 633170071178444800, 51919945836632473600, 4568955233623657676800, 429481791960623821619200
OFFSET
0,2
COMMENTS
Row m=10 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((6*n+10)(!^6))/10(!^6) = A034724(n+2)/10.
E.g.f.: 1/(1-6*x)^(8/3).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 15, 5!, 6}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(16/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(8/3))) \\ G. C. Greubel, Aug 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, A053101, A053102, this sequence (rows m=0..10).
Sequence in context: A363383 A136269 A010368 * A223032 A171680 A208706
KEYWORD
easy,nonn
STATUS
approved