login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials).
7

%I #16 Sep 08 2022 08:45:00

%S 1,16,352,9856,335104,13404160,616591360,32062750720,1859639541760,

%T 119016930672640,8331185147084800,633170071178444800,

%U 51919945836632473600,4568955233623657676800,429481791960623821619200

%N a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials).

%C Row m=10 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0.

%H G. C. Greubel, <a href="/A053103/b053103.txt">Table of n, a(n) for n = 0..343</a>

%F a(n) = ((6*n+10)(!^6))/10(!^6) = A034724(n+2)/10.

%F E.g.f.: 1/(1-6*x)^(8/3).

%t s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 15, 5!, 6}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008 *)

%t With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(16/6), {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Aug 16 2018 *)

%o (PARI) x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(8/3))) \\ _G. C. Greubel_, Aug 16 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 16 2018

%Y Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, A053101, A053102, this sequence (rows m=0..10).

%K easy,nonn

%O 0,2

%A _Wolfdieter Lang_