login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343445
Coefficients of the series S(p, q) for which (-sqrt(p))*S converges to the largest real root of x^3 - p*x + q for 0 < p and 0 < q < 2*(p/3)^(3/2).
1
-1, 1, 3, 24, 315, 5760, 135135, 3870720, 130945815, 5109350400, 225881530875, 11158821273600, 609202488769875, 36422392637030400, 2366751668870964375, 166086110424858624000, 12517749576658530579375
OFFSET
0,3
COMMENTS
Based on formulas for series solutions of trinomials given in Eagle article.
LINKS
Albert Eagle, Series for all the roots of a trinomial equation, Am. Math. Monthly, 46, no. 7 (Aug. - Sep., 1939), pp. 422-425.
FORMULA
a(n) = 2^(n - 1) * Gamma((3*n - 1)/2) / Gamma((n + 1)/2).
a(n) = 2^(n - 1) * ((n + 1)/2)_(n - 1), where (x)_k is the Pochhammer symbol for Gamma(x + k) / Gamma(k).
a(n) = 3*A113551(n-1) for n>=2. - Hugo Pfoertner, Apr 16 2021
E.g.f.: (sqrt(3)*sin(arcsin(3*sqrt(3)*x)/3) - 3*cos(arcsin(3*sqrt(3)*x)/3))/3. - Stefano Spezia, May 23 2021
a(n) = 3*(3*n - 5)*(3*n - 7)*a(n-2) with a(0) = -1, a(1) = 1 and a(2) = 3. - Peter Bala, Jul 23 2024
MAPLE
a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 3 else 3*(3*n - 5)*(3*n - 7)*a(n-2) fi; end:
seq(a(n), n = 1..20); # Peter Bala, Jul 23 2024
MATHEMATICA
Clear[a]; a = Table[2^(n - 1)Gamma[(3*n - 1)/2]/Gamma[(n + 1)/2], {n, 0, 20}] (* or equivalently *)
Clear[a]; a = Table[2^(n - 1)Pochhammer[(n + 1)/2, n - 1], {n, 0, 20}]
CROSSREFS
Sequence in context: A075142 A138428 A047056 * A264561 A003236 A232693
KEYWORD
sign,easy
AUTHOR
Dixon J. Jones, Apr 15 2021
STATUS
approved