login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052559
Expansion of e.g.f. (1-x)/(1 - 2*x - x^2 + x^3).
1
1, 1, 6, 36, 336, 3720, 50400, 791280, 14232960, 287763840, 6466521600, 159826867200, 4309577395200, 125885452492800, 3960073877760000, 133473015067392000, 4798579092443136000, 183299247820136448000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1-x)/(1 - 2*x - x^2 + x^3).
a(n) = 2*n*a(n-1) + n*(n-1)*a(n-2) - n*(n-1)*(n-2)*a(n-3), with a(0)=1, a(1)=1, a(2)=6.
a(n) = Sum((-1/7)*(-2*_alpha+_alpha^2-1)*_alpha^(-1-n), _alpha = RootOf(_Z^3-_Z^2-2*_Z+1))*n!.
a(n) = n!*A077998(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)/(1-2x-x^2+x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 14 2018 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( (1-x)/(1-2*x-x^2+x^3) )) \\ G. C. Greubel, May 06 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(1-2*x-x^2+x^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 06 2019
(Sage) m = 30; T = taylor((1-x)/(1-2*x-x^2+x^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 06 2019
CROSSREFS
Sequence in context: A337042 A098559 A129584 * A367490 A053335 A222925
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved