login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052559 Expansion of e.g.f. (1-x)/(1 - 2*x - x^2 + x^3). 1
1, 1, 6, 36, 336, 3720, 50400, 791280, 14232960, 287763840, 6466521600, 159826867200, 4309577395200, 125885452492800, 3960073877760000, 133473015067392000, 4798579092443136000, 183299247820136448000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..395

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 501

FORMULA

E.g.f.: (1-x)/(1 - 2*x - x^2 + x^3).

a(n) = 2*n*a(n-1) + n*(n-1)*a(n-2) - n*(n-1)*(n-2)*a(n-3), with a(0)=1, a(1)=1, a(2)=6.

a(n) = Sum((-1/7)*(-2*_alpha+_alpha^2-1)*_alpha^(-1-n), _alpha = RootOf(_Z^3-_Z^2-2*_Z+1))*n!.

a(n) = n!*A077998(n). - R. J. Mathar, Nov 27 2011

MAPLE

spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

With[{nn=20}, CoefficientList[Series[(1-x)/(1-2x-x^2+x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 14 2018 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(serlaplace( (1-x)/(1-2*x-x^2+x^3) )) \\ G. C. Greubel, May 06 2019

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(1-2*x-x^2+x^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 06 2019

(Sage) m = 30; T = taylor((1-x)/(1-2*x-x^2+x^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 06 2019

CROSSREFS

Sequence in context: A047898 A098559 A129584 * A053335 A222925 A108733

Adjacent sequences:  A052556 A052557 A052558 * A052560 A052561 A052562

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 09:00 EDT 2020. Contains 333268 sequences. (Running on oeis4.)