login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169620
Hankel transform of quintuple factorial numbers A008548.
3
1, 5, 1500, 74250000, 1176120000000000, 9780613920000000000000000, 63441756579801600000000000000000000000, 446492348463430358369280000000000000000000000000000000
OFFSET
0,2
LINKS
FORMULA
a(n) = Product_{k=0..n} ((5*k+1)*(5*k+5))^(n-k).
a(n) ~ (2*Pi)^(n + 3/5) * 5^(n*(n+1)) * n^(n^2 + 6*n/5 + 53/150) / (A * Gamma(1/5)^(n + 1/5) * exp(3*n^2/2 + 6*n/5 - 1/12 - c)), where A is the Glaisher-Kinkelin constant A074962 and c = zeta'(-1, 1/5) = 0.0831827651866002925663000008102352492418540625037508868... - Vaclav Kotesovec, Jan 23 2024
MAPLE
seq(product(((5*k+1)*(5*k+5))^(n-k), k = 0..n), n = 0..10); # G. C. Greubel, Aug 17 2019
MATHEMATICA
Table[Product[((5*k+1)*(5*k+5))^(n-k), {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, Aug 17 2019 *)
PROG
(PARI) vector(10, n, n--; prod(k=0, n, ((5*k+1)*(5*k+5))^(n-k))) \\ G. C. Greubel, Aug 17 2019
(Magma) [(&*[((5*k+1)*(5*k+5))^(n-k): k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 17 2019
(Sage) [product(((5*k+1)*(5*k+5))^(n-k) for k in (0..n)) for n in (0..10)] # G. C. Greubel, Aug 17 2019
(GAP) List([0..10], n-> Product([0..n], k-> ((5*k+1)*(5*k+5))^(n-k))); # G. C. Greubel, Aug 17 2019
CROSSREFS
Cf. A008548.
Sequence in context: A316951 A317731 A259867 * A181992 A145694 A184970
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 03 2009
STATUS
approved