login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(x) / (1 - 5 * x)^(1/5).
3

%I #8 Aug 14 2021 08:47:03

%S 1,2,9,88,1361,28182,726889,22414988,803913441,32867765002,

%T 1508608850249,76804271962848,4294870015118641,261673684619584862,

%U 17252970318529474089,1223896705010751194068,92946073511938131386561,7523666291578066678172562,646658551118777059833155209

%N E.g.f.: exp(x) / (1 - 5 * x)^(1/5).

%C Binomial transform of A008548.

%F a(n) = Sum_{k=0..n} binomial(n,k) * A008548(k).

%F a(n) ~ n! * exp(1/5) * 5^n / (Gamma(1/5) * n^(4/5)). - _Vaclav Kotesovec_, Aug 14 2021

%p g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:

%p a:= n-> add(binomial(n, k)*g(k), k=0..n):

%p seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 10 2021

%t nmax = 18; CoefficientList[Series[Exp[x]/(1 - 5 x)^(1/5), {x, 0, nmax}], x] Range[0, nmax]!

%t Table[Sum[Binomial[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]

%t Table[HypergeometricU[1/5, n + 6/5, 1/5]/5^(1/5), {n, 0, 18}]

%Y Cf. A000522, A008548, A056546, A084262, A088992, A346258, A347012, A347014.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Aug 10 2021