login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274113
Number of equivalence classes of ballot paths of length n for the string dud.
2
1, 1, 1, 1, 2, 3, 5, 7, 11, 16, 26, 39, 63, 95, 154, 235, 381, 585, 948, 1464, 2373, 3682, 5967, 9293, 15060, 23531, 38131, 59741, 96801, 152020, 246310, 387611, 627985, 990027, 1603893, 2532609, 4102726, 6487600, 10509114, 16639214, 26952186, 42722941, 69199472
OFFSET
0,5
LINKS
K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015, proposition 3.6.
FORMULA
G.f. y satisfies: 0 = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4. - Gheorghe Coserea, Jan 05 2017
MATHEMATICA
terms = 43; y[_] = 0; Do[y[x_] = (-1+x^2-x^4+(2x-3x^2-2x^3+2x^4+2x^5-2x^6) y[x]^2 + (x^2-x^3-x^4) y[x]^3)/(-1+3x+x^2-3x^3-x^4+ x^5) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Oct 07 2018 *)
PROG
(PARI)
x='x; y='y;
Fxy = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4;
seq(N) = {
my(y0 = 1 + O('x^N), y1=0);
for (k = 1, N,
y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
seq(43) \\ Gheorghe Coserea, Jan 05 2017
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Jun 17 2016
EXTENSIONS
a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017
STATUS
approved