The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273041 Discriminator of the Catalan numbers A000108. 2
 1, 2, 5, 5, 11, 11, 16, 16, 23, 23, 23, 23, 47, 47, 64, 64, 64, 64, 71, 71, 141, 141, 141, 141, 173, 173, 173, 173, 173, 173, 173, 201, 251, 251, 251, 251, 251, 251, 251, 313, 313, 313, 383, 383, 383, 383, 383, 519, 519, 519, 519, 519, 519, 519, 519, 519, 601, 601, 601, 601, 601, 601, 601, 601, 601, 601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The discriminator of a sequence is the least positive integer k such that the first n terms of the sequence are pairwise distinct modulo k. LINKS Robert Israel, Table of n, a(n) for n = 1..1127 MAPLE N = 100: # to get a(1) .. a(N) F:= proc(m)   local G, i, j, x, S;   G:= 1+x; S:= {1};   for i from 2 do     G:= convert(series((x*G^2-1)/(2*x*G-1), x, 2^i+1), polynom) mod m;     for j from 2^(i-1) to 2^i do       S:= S union {coeff(G, x, j)};       if nops(S) < j then return j-1 fi     od:   od end proc: nmax:= 1: A[1]:= 1: for k from 2 while nmax < N do   v:= F(k);   if v > nmax then     for j from nmax+1 to v do A[j]:= k od:     nmax:= v;   fi: od: seq(A[i], i=1..N); # Robert Israel, May 13 2016 CROSSREFS Cf. A000108. Sequence in context: A081467 A194119 A084721 * A274108 A138316 A183719 Adjacent sequences:  A273038 A273039 A273040 * A273042 A273043 A273044 KEYWORD nonn AUTHOR Jeffrey Shallit, May 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 17:45 EDT 2020. Contains 337444 sequences. (Running on oeis4.)