login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117956
Number of partitions of n into exactly 2 types of parts: one odd and one even.
4
0, 0, 1, 1, 4, 3, 8, 6, 13, 10, 19, 13, 26, 20, 32, 23, 41, 31, 49, 34, 58, 45, 66, 47, 76, 60, 88, 60, 96, 76, 106, 76, 122, 93, 126, 94, 140, 111, 158, 106, 163, 134, 175, 127, 196, 150, 198, 149, 212, 170, 240, 164, 238, 200, 250, 180, 284, 214, 277, 216, 292, 238
OFFSET
1,5
LINKS
D. Christopher and T. Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.
N. Benyahia Tani, S. Bouroubi, and O. Kihel, An effective approach for integer partitions using exactly two distinct sizes of parts, Bulletin du Laboratoire 03 (2015), 18-27.
FORMULA
G.f.: Sum_{i>=1}(Sum{j>=1}(x^(2*i+2*j-1)/((1-x^(2*i-1))*(1-x^(2*j)))).
Convolution of x(n) and y(n), where x(n) is the number of even divisors of n and y(n) is the number of odd divisors of n. - Vladeta Jovovic, Apr 05 2006
EXAMPLE
a(7) = 8 because we have [6,1], [5,2], [4,3], [4,1,1,1], [3,2,2], [2,2,2,1],[2,2,1,1,1] and [2,1,1,1,1,1].
MAPLE
g := add(add(x^(2*i+2*j-1)/(1-x^(2*i-1))/(1-x^(2*j)), j=1..70), i=1..70):
gser:=series(g, x=0, 70): seq(coeff(gser, x^n), n=1..67);
MATHEMATICA
With[{nmax = 80}, CoefficientList[Series[Sum[Sum[x^(2*k + 2*j - 2)/((1 - x^(2*k - 1))*(1 - x^(2*j))), {j, 1, 2*nmax}], {k, 1, 2*nmax}], {x, 0, nmax}], x]] (* G. C. Greubel, Oct 06 2018 *)
PROG
(PARI) x='x+O('x^80); concat([0, 0], Vec(sum(k=1, 100, sum(j=1, 100, x^(2*k + 2*j - 2)/((1 - x^(2*k - 1))*(1 - x^(2*j))))))) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!((&+[(&+[x^(2*k + 2*j - 2)/((1 - x^(2*k - 1))*(1 - x^(2*j))): j in [1..100]]): k in [1..100]]))); // G. C. Greubel, Oct 06 2018
(Python)
from sympy import divisors
def A117956(n): return sum(1 for ax in range(1, n-1) for a in divisors(ax, generator=True) for b in divisors(n-ax, generator=True) if a<b and (a^b)&1) # Chai Wah Wu, Dec 14 2024
CROSSREFS
Sequence in context: A011451 A200089 A330686 * A241638 A360689 A110662
KEYWORD
nonn,changed
AUTHOR
Emeric Deutsch, Apr 05 2006
STATUS
approved