OFFSET
0,3
COMMENTS
From Ant King, Mar 15 2013: (Start)
The terms of this sequence give a running total of the excess of the 4k + 1 divisors of the natural numbers (from 1 through to n) over their 4k + 3 divisors.
To see how good the approximation n * Pi/4 is to a(n), note that a(10^6) = 785387 whereas 10^6 * Pi/4 rounds to 785398. (End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = A014198(n) / 4.
Limit_{n->infinity} a(n)/n = Pi/4.
a(n) = n - floor(n/3) + floor(n/5) - floor(n/7) + floor(n/9) - floor(n/11) + ... - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016
MATHEMATICA
1/4*Prepend[SquaresR[2, #]&/@Range[58], 0]//Accumulate (* Ant King, Mar 15 2013 *)
PROG
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d))); \\ Seiichi Manyama, Dec 18 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved